

Welcome to pgcopydb’s documentation!

The pgcopydb [https://github.com/dimitri/pgcopydb] project is an Open Source Software project. The development
happens at https://github.com/dimitri/pgcopydb and is public: everyone
is welcome to participate by opening issues, pull requests, giving feedback,
etc.

Remember that the first steps are to actually play with the pgcopydb
command, then read the entire available documentation (after all, I took the
time to write it), and then to address the community in a kind and polite
way — the same way you would expect people to use when addressing you.

Documentation Table of Contents

	Introduction to pgcopydb
	Feature Matrix

	pgcopydb uses pg_dump and pg_restore

	Change Data Capture, or fork and follow

	Design Considerations
	Bypass intermediate files for the TABLE DATA

	Notes about concurrency

	For each table, build all indexes concurrently

	Same-table Concurrency

	Installing pgcopydb
	debian packages

	RPM packages

	Docker Images

	Build from sources

	Manual Pages
	pgcopydb

	pgcopydb clone

	pgcopydb follow

	pgcopydb snapshot

	pgcopydb copy

	pgcopydb dump

	pgcopydb restore

	pgcopydb list

	pgcopydb stream

	pgcopydb configuration

Indices and tables

	Index

	Module Index

	Search Page

Introduction to pgcopydb

pgcopydb is a tool that automates copying a PostgreSQL database to another
server. Main use case for pgcopydb is migration to a new Postgres system,
either for new hardware, new architecture, or new Postgres major version.

The idea would be to run pg_dump -jN | pg_restore -jN between two
running Postgres servers. To make a copy of a database to another server as
quickly as possible, one would like to use the parallel options of
pg_dump and still be able to stream the data to as many pg_restore
jobs. Unfortunately, that approach can’t be implemented by using pg_dump and
pg_restore directly, see Bypass intermediate files for the TABLE DATA.

When using pgcopydb it is possible to achieve both concurrency and
streaming with this simple command line:

$ export PGCOPYDB_SOURCE_PGURI="postgres://user@source.host.dev/dbname"
$ export PGCOPYDB_TARGET_PGURI="postgres://role@target.host.dev/dbname"

$ pgcopydb clone --table-jobs 4 --index-jobs 4

See the manual page for pgcopydb clone for detailed information about
how the command is implemented, and many other supported options.

Feature Matrix

Here is a comparison of the features available when using pg_dump and
pg_restore directly, and when using pgcopydb to handle the database copying.

	Feature

	pgcopydb

	pg_dump ; pg_restore

	Single-command operation

	✓

	✗

	Snapshot consistency

	✓

	✓

	Ability to resume partial run

	✓

	✗

	Advanced filtering

	✓

	✓

	Tables concurrency

	✓

	✓

	Same-table concurrency

	✓

	✗

	Index concurrency

	✓

	✓

	Constraint index concurrency

	✓

	✗

	Schema

	✓

	✓

	Large Objects

	✓

	✓

	Vacuum Analyze

	✓

	✗

	Copy Freeze

	✓

	✗

	Roles

	✓

	✗ (needs pg_dumpall)

	Tablespaces

	✗

	✗ (needs pg_dumpall)

	Follow changes

	✓

	✗

See documentation about pgcopydb pgcopydb configuration for its Advanced filtering
capabilities.

pgcopydb uses pg_dump and pg_restore

The implementation of pgcopydb actually calls into the pg_dump and
pg_restore binaries to handle a large part of the work, such as the pre-data
and post-data sections. See pg_dump docs [https://www.postgresql.org/docs/current/app-pgdump.html] for more information about the
three sections supported.

After using pg_dump to obtain the pre-data and the post-data parts, then
pgcopydb restore the pre-data parts to the target Postgres instance using
pg_restore.

Then pgcopydb uses SQL commands and the COPY streaming protocol [https://www.postgresql.org/docs/current/sql-copy.html] to
migrate the table contents, the large objects data, and to VACUUM ANALYZE
tables as soon as the data is available on the target instance.

Then pgcopydb uses SQL commands to build the indexes on the target Postgres
instance, as detailed in the design doc For each table, build all indexes concurrently. This
allows to include constraint indexes such as Primary Keys in the list of
indexes built at the same time.

Change Data Capture, or fork and follow

It is also possible with pgcopydb to implement Change Data Capture and
replay data modifications happening on the source database to the target
database. See the pgcopydb follow command and the pgcopydb clone
--follow command line option at pgcopydb clone in the manual.

The simplest possible implementation of online migration with pgcopydb,
where changes being made to the source Postgres instance database are
replayed on the target system, looks like the following:

1 $ pgcopydb clone --follow &
2
3 # later when the application is ready to make the switch
4 $ pgcopydb stream sentinel set endpos --current
5
6 # later when the migration is finished, clean-up both source and target
7 $ pgcopydb stream cleanup

Design Considerations

The reason why pgcopydb has been developed is mostly to allow two
aspects that are not possible to achieve directly with pg_dump and
pg_restore, and that requires just enough fiddling around that not many
scripts have been made available to automate around.

Bypass intermediate files for the TABLE DATA

First aspect is that for pg_dump and pg_restore to implement
concurrency they need to write to an intermediate file first.

The docs for pg_dump [https://www.postgresql.org/docs/current/app-pgdump.html] say the following about the --jobs parameter:

You can only use this option with the directory output format because this
is the only output format where multiple processes can write their data at
the same time.

The docs for pg_restore [https://www.postgresql.org/docs/current/app-pgrestore.html] say the following about the --jobs
parameter:

Only the custom and directory archive formats are supported with this
option. The input must be a regular file or directory (not, for example, a
pipe or standard input).

So the first idea with pgcopydb is to provide the --jobs concurrency and
bypass intermediate files (and directories) altogether, at least as far as
the actual TABLE DATA set is concerned.

The trick to achieve that is that pgcopydb must be able to connect to the
source database during the whole operation, when pg_restore may be used
from an export on-disk, without having to still be able to connect to the
source database. In the context of pgcopydb requiring access to the source
database is fine. In the context of pg_restore, it would not be
acceptable.

Notes about concurrency

The pgcopydb too implements many operations concurrently to one another, by
ways of using the fork() system call. This means that pgcopydb creates
sub-processes that each handle a part of the work.

The process tree then looks like the following:

	pgcopydb clone –follow –table-jobs 4 –index-jobs 4

	pgcopydb clone worker

	pgcopydb copy supervisor (--table-jobs 4)

	pgcopydb copy worker

	pgcopydb copy worker

	pgcopydb copy worker

	pgcopydb copy worker

	pgcopydb blob worker

	pgcopydb index/constraints worker (--index-jobs 4)

	pgcopydb index/constraints worker (--index-jobs 4)

	pgcopydb index/constraints worker (--index-jobs 4)

	pgcopydb index/constraints worker (--index-jobs 4)

	pgcopydb vacuum analyze worker (--table-jobs 4)

	pgcopydb vacuum analyze worker (--table-jobs 4)

	pgcopydb vacuum analyze worker (--table-jobs 4)

	pgcopydb vacuum analyze worker (--table-jobs 4)

	pgcopydb sequences reset worker

	pgcopydb follow worker

	pgcopydb stream receive

	pgcopydb stream transform

	pgcopydb stream catchup

We see that when using pgcopydb clone --follow --table-jobs 4 --index-jobs
4 then pgcopydb creates 20 sub-processes, including one transient
sub-process each time a JSON file is to be converted to a SQL file for
replay.

The 20 total is counted from:

	1 clone worker + 1 copy supervisor + 4 copy workers + 1 blob worker + 4
index workers + 4 vacuum workers + 1 sequence reset worker

that’s 1 + 1 + 4 + 1 + 4 + 4 + 1 = 16

	1 follow worker + 1 stream receive + 1 stream transform + 1 stream catchup

that’s 1 + 1 + 1 + 1 = 4

	that’s 16 + 4 = 20 total

Here is a description of the process tree:

	When starting with the TABLE DATA copying step, then pgcopydb creates as
many sub-processes as specified by the --table-jobs command line
option (or the environment variable PGCOPYDB_TABLE_JOBS).

	A single sub-process is created by pgcopydb to copy the Postgres Large
Objects (BLOBs) found on the source database to the target database.

	To drive the index and constraint build on the target database, pgcopydb
creates as many sub-processes as specified by the --index-jobs
command line option (or the environment variable
PGCOPYDB_INDEX_JOBS).

It is possible with Postgres to create several indexes for the same table
in parallel, for that, the client just needs to open a separate database
connection for each index and run each CREATE INDEX command in its own
connection, at the same time. In pgcopydb this is implemented by running
one sub-process per index to create.

The --index-jobs option is global for the whole operation, so that
it’s easier to setup to the count of available CPU cores on the target
Postgres instance. Usually, a given CREATE INDEX command uses 100% of a
single core.

	To drive the VACUUM ANALYZE workload on the target database pgcopydb
creates as many sub-processes as specified by the --table-jobs
command line option.

	To reset sequences in parallel to COPYing the table data, pgcopydb
creates a single dedicated sub-process.

	When using the --follow option then another sub-process leader is
created to handle the three Change Data Capture processes.

	One process implements pgcopydb stream receive to fetch changes
in the JSON format and pre-fetch them in JSON files.

	As soon as JSON file is completed, the pgcopydb stream transform
worker transforms the JSON file into SQL, as if by calling the command
pgcopydb stream transform.

	Another process implements pgcopydb stream catchup to apply SQL
changes to the target Postgres instance. This process loops over
querying the pgcopydb sentinel table until the apply mode has been
enabled, and then loops over the SQL files and run the queries from
them.

For each table, build all indexes concurrently

pgcopydb takes the extra step and makes sure to create all your indexes in
parallel to one-another, going the extra mile when it comes to indexes that
are associated with a constraint.

Postgres introduced the configuration parameter synchronize_seqscans [https://postgresqlco.nf/doc/en/param/synchronize_seqscans/] in
version 8.3, eons ago. It is on by default and allows the following
behavior:

This allows sequential scans of large tables to synchronize with each
other, so that concurrent scans read the same block at about the same time
and hence share the I/O workload.

The other aspect that pg_dump and pg_restore are not very smart about is
how they deal with the indexes that are used to support constraints, in
particular unique constraints and primary keys.

Those indexes are exported using the ALTER TABLE command directly. This is
fine because the command creates both the constraint and the underlying
index, so the schema in the end is found as expected.

That said, those ALTER TABLE ... ADD CONSTRAINT commands require a level
of locking that prevents any concurrency. As we can read on the docs for
ALTER TABLE [https://www.postgresql.org/docs/current/sql-altertable.html]:

Although most forms of ADD table_constraint require an ACCESS EXCLUSIVE
lock, ADD FOREIGN KEY requires only a SHARE ROW EXCLUSIVE lock. Note that
ADD FOREIGN KEY also acquires a SHARE ROW EXCLUSIVE lock on the referenced
table, in addition to the lock on the table on which the constraint is
declared.

The trick is then to first issue a CREATE UNIQUE INDEX statement and when
the index has been built then issue a second command in the form of ALTER
TABLE ... ADD CONSTRAINT ... PRIMARY KEY USING INDEX ..., as in the
following example taken from the logs of actually running pgcopydb:

21:52:06 68898 INFO COPY "demo"."tracking";
21:52:06 68899 INFO COPY "demo"."client";
21:52:06 68899 INFO Creating 2 indexes for table "demo"."client"
21:52:06 68906 INFO CREATE UNIQUE INDEX client_pkey ON demo.client USING btree (client);
21:52:06 68907 INFO CREATE UNIQUE INDEX client_pid_key ON demo.client USING btree (pid);
21:52:06 68898 INFO Creating 1 indexes for table "demo"."tracking"
21:52:06 68908 INFO CREATE UNIQUE INDEX tracking_pkey ON demo.tracking USING btree (client, ts);
21:52:06 68907 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pid_key" UNIQUE USING INDEX "client_pid_key";
21:52:06 68906 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pkey" PRIMARY KEY USING INDEX "client_pkey";
21:52:06 68908 INFO ALTER TABLE "demo"."tracking" ADD CONSTRAINT "tracking_pkey" PRIMARY KEY USING INDEX "tracking_pkey";

This trick is worth a lot of performance gains on its own, as has been
discovered and experienced and appreciated by pgloader [https://github.com/dimitri/pgloader] users already.

Same-table Concurrency

In some database schema design, it happens that most of the database size
on-disk is to be found in a single giant table, or a short list of giant
tables. When this happens, the concurrency model that is implemented with
--table-jobs still allocates a single process to COPY all the data from
the source table.

Same-table concurrency allows pgcopydb to use more than once process at the
same time to process a single source table. The data is then logically
partitionned (on the fly) and split between processes:

	To fetch the data from the source database, the COPY processes then use
SELECT queries like in the following example:

COPY (SELECT * FROM source.table WHERE id BETWEEN 1 AND 123456)
COPY (SELECT * FROM source.table WHERE id BETWEEN 123457 AND 234567)
COPY (SELECT * FROM source.table WHERE id BETWEEN 234568 AND 345678)
...

This is only possible when the source.table has at least one column of
an integer type (int2, int4, and int8 are supported) and
with a UNIQUE or PRIMARY KEY constraint. We must make sure that any
given row is selected only once overall to avoid introducing duplicates
on the target database.

	To decide if a table COPY processing should be split, the command line
option split-tables-larger-than is used, or the environment variable
PGCOPYDB_SPLIT_TABLES_LARGER_THAN.

The expected value is either a plain number of bytes, or a
pretty-printed number of bytes such as 250 GB.

When using this option, then tables that have at least this amount of
data and also a candidate key for the COPY partitioning are then
distributed among a number of COPY processes.

The number of COPY processes is computed by dividing the table size by
the threshold set with the split option. For example, if the threshold
is 250 GB then a 400 GB table is going to be distributed among 2 COPY
processes.

The command pgcopydb list table-parts may be used to list the
COPY partitioning that pgcopydb computes given a source table and a
threshold.

Significant differences when using same-table COPY concurrency

When same-table concurrency happens for a source table, some operations are
not implemented as they would have been without same-table concurrency.
Specifically:

	TRUNCATE and COPY FREEZE Postgres optimisation

When using a single COPY process, it’s then possible to TRUNCATE the
target table in the same transaction as the COPY command, as in the
following syntethic example:

BEGIN;
TRUNCATE table ONLY;
COPY table FROM stdin WITH (FREEZE);
COMMIT

This technique allows Postgres to implement several optimisations, doing
work during the COPY that would otherwise need to happen later when
executing the first queries on the table.

When using same-table concurrency then we have several transactions
happening concurrently on the target system that are copying data from
the source table. This means that we have to TRUNCATE separately and the
FREEZE option can not be used.

	CREATE INDEX and VACUUM

Even when same-table COPY concurrency is enabled, creating the indexes
on the target system only happens after the whole data set has been
copied over. This means that only the when the last process is done with
the COPYing then this process will take care of the the indexes and the
vacuum analyze operation.

Same-table COPY concurrency performance limitations

Finally, it might be that same-table concurrency is not effective at all in
some use cases. Here is a list of limitations to have in mind when selecting
to use this feature:

	Network Bandwidth

The most common performance bottleneck relevant to database migrations
is the network bandwidth. When the bandwidth is saturated (used in full)
then same-table concurrency will provide no performance benefits.

	Disks IOPS

The second most command performance bottleneck relevant to database
migrations is disks IOPS and, in the Cloud, burst capacity. When the
disk bandwidth is used in full, then same-table concurrency will provide
no performance benefits.

Source database system uses read IOPS, target database system uses both
read and write IOPS (copying the data writes to disk, creating the
indexes both read table data from disk and then write index data to
disk).

	On-disk data organisation

When using a single COPY process, the target system may fill-in the
Postgres table in a clustered way, using each disk page in full before
opening the next one, in a sequential fashion.

When using same-table COPY concurrency, then the target Postgres system
needs to handle concurrent writes to the same table, resulting in a
possibly less effective disk usage.

How that may impact your application performance is to be tested.

	synchronize_seqscans

Postgres implemented this option back in version 8.3. The option is now
documented in the Version and Platform Compatibility [https://www.postgresql.org/docs/current/runtime-config-compatible.html] section.

The documentation reads:

This allows sequential scans of large tables to synchronize with
each other, so that concurrent scans read the same block at about
the same time and hence share the I/O workload.

The impact on performance when having concurrent COPY processes reading
the same source table at the same time is to be assessed. At the moment
there is no option in pgcopydb to SET synchronize_seqscans TO off when
using same-table COPY concurrency.

Use your usual Postgres configuration editing for testing.

Installing pgcopydb

Several distributions are available for pgcopydb.

debian packages

Binary packages for debian and derivatives (ubuntu) are available from
apt.postgresql.org [https://wiki.postgresql.org/wiki/Apt] repository, install by following the linked
documentation and then:

$ sudo apt-get install pgcopydb

RPM packages

The Postgres community repository for RPM packages is yum.postgresql.org [https://yum.postgresql.org]
and does not include binary packages for pgcopydb at this time.

Docker Images

Docker images are maintained for each tagged release at dockerhub, and also
built from the CI/CD integration on GitHub at each commit to the main
branch.

The DockerHub dimitri/pgcopydb [https://hub.docker.com/r/dimitri/pgcopydb#!] repository is where the tagged releases
are made available. The image uses the Postgres version currently in debian
stable.

To use this docker image:

$ docker run --rm -it dimitri/pgcopydb:v0.10 pgcopydb --version

Or you can use the CI/CD integration that publishes packages from the main
branch to the GitHub docker repository:

$ docker pull ghcr.io/dimitri/pgcopydb:latest
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --version
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --help

Build from sources

Building from source requires a list of build-dependencies that’s comparable
to that of Postgres itself. The pgcopydb source code is written in C and the
build process uses a GNU Makefile.

See our main Dockerfile [https://github.com/dimitri/pgcopydb/blob/main/Dockerfile] for a complete recipe to build pgcopydb when
using a debian environment.

Then the build process is pretty simple, in its simplest form you can just
use make clean install, if you want to be more fancy consider also:

$ make -s clean
$ make -s -j12 install

Manual Pages

The pgcopydb command provides several sub-commands. Each of them have
their own manual page.

Manual Pages:

	pgcopydb

	pgcopydb clone

	pgcopydb follow

	pgcopydb snapshot

	pgcopydb copy

	pgcopydb dump

	pgcopydb restore

	pgcopydb list

	pgcopydb stream

	pgcopydb configuration

pgcopydb

pgcopydb - copy an entire Postgres database from source to target

Synopsis

pgcopydb provides the following commands:

pgcopydb
 clone Clone an entire database from source to target
 fork Clone an entire database from source to target
 follow Replay changes from the source database to the target database
 snapshot Create and exports a snapshot on the source database
+ copy Implement the data section of the database copy
+ dump Dump database objects from a Postgres instance
+ restore Restore database objects into a Postgres instance
+ list List database objects from a Postgres instance
+ stream Stream changes from the source database
 help print help message
 version print pgcopydb version

Description

The pgcopydb command implements a full migration of an entire Postgres
database from a source instance to a target instance. Both the Postgres
instances must be available for the entire duration of the command.

The pgcopydb command also implements a full Logical Decoding [https://www.postgresql.org/docs/current/logicaldecoding.html] client for
the wal2json [https://github.com/eulerto/wal2json/] logical decoding plugin, allowing Change Data Capture to
replay data changes (DML) happening on the source database after the base
copy snapshot.

pgcopydb help

The pgcopydb help command lists all the supported sub-commands:

pgcopydb pgcopydb help
 pgcopydb
 clone Clone an entire database from source to target
 fork Clone an entire database from source to target
 follow Replay changes from the source database to the target database
 copy-db Copy an entire database from source to target
 snapshot Create and exports a snapshot on the source database
 + copy Implement the data section of the database copy
 + dump Dump database objects from a Postgres instance
 + restore Restore database objects into a Postgres instance
 + list List database objects from a Postgres instance
 + stream Stream changes from the source database
 help print help message
 version print pgcopydb version

 pgcopydb copy
 db Copy an entire database from source to target
 roles Copy the roles from the source instance to the target instance
 schema Copy the database schema from source to target
 data Copy the data section from source to target
 table-data Copy the data from all tables in database from source to target
 blobs Copy the blob data from ther source database to the target
 sequences Copy the current value from all sequences in database from source to target
 indexes Create all the indexes found in the source database in the target
 constraints Create all the constraints found in the source database in the target

 pgcopydb dump
 schema Dump source database schema as custom files in work directory
 pre-data Dump source database pre-data schema as custom files in work directory
 post-data Dump source database post-data schema as custom files in work directory
 roles Dump source database roles as custome file in work directory

 pgcopydb restore
 schema Restore a database schema from custom files to target database
 pre-data Restore a database pre-data schema from custom file to target database
 post-data Restore a database post-data schema from custom file to target database
 roles Restore database roles from SQL file to target database
 parse-list Parse pg_restore --list output from custom file

 pgcopydb list
 tables List all the source tables to copy data from
 table-parts List a source table copy partitions
 sequences List all the source sequences to copy data from
 indexes List all the indexes to create again after copying the data
 depends List all the dependencies to filter-out

 pgcopydb stream
 setup Setup source and target systems for logical decoding
 cleanup cleanup source and target systems for logical decoding
 prefetch Stream JSON changes from the source database and transform them to SQL
 catchup Apply prefetched changes from SQL files to the target database
 + create Create resources needed for pgcopydb
 + drop Drop resources needed for pgcopydb
 + sentinel Maintain a sentinel table on the source database
 receive Stream changes from the source database
 transform Transform changes from the source database into SQL commands
 apply Apply changes from the source database into the target database

 pgcopydb stream create
 slot Create a replication slot in the source database
 origin Create a replication origin in the target database

 pgcopydb stream drop
 slot Drop a replication slot in the source database
 origin Drop a replication origin in the target database

 pgcopydb stream sentinel
 create Create the sentinel table on the source database
 drop Drop the sentinel table on the source database
 get Get the sentinel table values on the source database
 + set Maintain a sentinel table on the source database

 pgcopydb stream sentinel set
 startpos Set the sentinel start position LSN on the source database
 endpos Set the sentinel end position LSN on the source database
 apply Set the sentinel apply mode on the source database
 prefetch Set the sentinel prefetch mode on the source database

pgcopydb version

The pgcopydb version command outputs the version string of the version
of pgcopydb used, and can do that in the JSON format when using the
--json option.

$ pgcopydb version
pgcopydb version 0.8
compiled with PostgreSQL 12.12 on x86_64-apple-darwin16.7.0, compiled by Apple LLVM version 8.1.0 (clang-802.0.42), 64-bit
compatible with Postgres 10, 11, 12, 13, and 14

In JSON:

$ pgcopydb version --json
{
 "pgcopydb": "0.8",
 "pg_major": "12",
 "pg_version": "12.12",
 "pg_version_str": "PostgreSQL 12.12 on x86_64-apple-darwin16.7.0, compiled by Apple LLVM version 8.1.0 (clang-802.0.42), 64-bit",
 "pg_version_num": 120012
}

The details about the Postgres version applies to the version that’s been
used to build pgcopydb from sources, so that’s the version of the client
library libpq really.

pgcopydb clone

The main pgcopydb operation is the clone operation, and for historical and
user friendlyness reasons three aliases are available that implement the
same operation:

pgcopydb
 clone Clone an entire database from source to target
 fork Clone an entire database from source to target
 copy-db Copy an entire database from source to target

pgcopydb clone

The command pgcopydb clone copies a database from the given source
Postgres instance to the target Postgres instance.

pgcopydb clone: Clone an entire database from source to target
usage: pgcopydb clone --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --split-tables-larger-than Same-table concurrency size threshold
 --drop-if-exists On the target database, clean-up from a previous run first
 --roles Also copy roles found on source to target
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --skip-large-objects Skip copying large objects (blobs)
 --skip-extensions Skip restoring extensions
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --follow Implement logical decoding to replay changes
 --slot-name Use this Postgres replication slot name
 --create-slot Create the replication slot
 --origin Use this Postgres replication origin node name
 --endpos Stop replaying changes when reaching this LSN

pgcopydb fork

The command pgcopydb fork copies a database from the given source
Postgres instance to the target Postgres instance. This command is an alias
to the command pgcopydb clone seen above.

pgcopydb copy-db

The command pgcopydb copy-db copies a database from the given source
Postgres instance to the target Postgres instance. This command is an alias
to the command pgcopydb clone seen above, and available for backward
compatibility only.

Warning

The pgcopydb copy-db command is now deprecated and will get removed
from pgcopydb when hitting version 1.0, please upgrade your scripts and
integrations.

Description

The pgcopydb clone command implements both a base copy of a source
database into a target database and also a full Logical Decoding [https://www.postgresql.org/docs/current/logicaldecoding.html] client
for the wal2json [https://github.com/eulerto/wal2json/] logical decoding plugin.

Base copy, or the clone operation

The pgcopydb clone command implements the following steps:

	pgcopydb calls into pg_dump to produce the pre-data section
and the post-data sections of the dump using Postgres custom
format.

	pgcopydb gets the list of ordinary and partitioned tables from a
catalog query on the source database, and also the list of indexes, and
the list of sequences with their current values.

When filtering is used, the list of objects OIDs that are meant to be
filtered out is built during this step.

	The pre-data section of the dump is restored on the target database
using the pg_restore command, creating all the Postgres objects
from the source database into the target database.

When filtering is used, the pg_restore --use-list feature is used
to filter the list of objects to restore in this step.

	Then as many as --table-jobs COPY sub-processes are started to
share the workload and COPY the data from the source to the target
database one table at a time, in a loop.

A Postgres connection and a SQL query to the Postgres catalog table
pg_class is used to get the list of tables with data to copy around,
and the reltuples statistic is used to start with the tables with the
greatest number of rows first, as an attempt to minimize the copy time.

	An auxiliary process loops through all the Large Objects found on the
source database and copies its data parts over to the target database,
much like pg_dump itself would.

This step is much like pg_dump | pg_restore for large objects data
parts, except that there isn’t a good way to do just that with the
tooling.

	As many as --index-jobs CREATE INDEX sub-processes are started to
share the workload and build indexes. In order to make sure to start
the CREATE INDEX commands only after the COPY operation has completed,
a queue mechanism is used. As soon as a table data COPY has completed,
all the indexes for the table are queued for processing by the CREATE
INDEX sub-processes.

The primary indexes are created as UNIQUE indexes at this stage.

	Then the PRIMARY KEY constraints are created USING the just built
indexes. This two-steps approach allows the primary key index itself to
be created in parallel with other indexes on the same table, avoiding
an EXCLUSIVE LOCK while creating the index.

	As many as -table-jobs VACUUM ANALYZE sub-processes are started to
share the workload. As soon as a table data COPY has completed, the
table is queued for processing by the VACUUM ANALYZE sub-processes.

	An auxilliary process is loops over the sequences on the source
database and for each of them runs a separate query on the source to
fetch the last_value and the is_called metadata the same way
that pg_dump does.

For each sequence, pgcopydb then calls pg_catalog.setval() on the
target database with the information obtained on the source database.

	The final stage consists now of running the pg_restore command for
the post-data section script for the whole database, and that’s
where the foreign key constraints and other elements are created.

The post-data script is filtered out using the pg_restore
--use-list option so that indexes and primary key constraints
already created in steps 6 and 7 are properly skipped now.

Postgres privileges, superuser, and dump and restore

Postgres has a notion of a superuser status that can be assigned to any role
in the system, and the default role postgres has this status. From the
Role Attributes [https://www.postgresql.org/docs/current/role-attributes.html] documentation page we see that:

superuser status:

A database superuser bypasses all permission checks, except the right to
log in. This is a dangerous privilege and should not be used carelessly;
it is best to do most of your work as a role that is not a superuser. To
create a new database superuser, use CREATE ROLE name SUPERUSER. You must
do this as a role that is already a superuser.

Some Postgres objects can only be created by superusers, and some read and
write operations are only allowed to superuser roles, such as the following
non-exclusive list:

	Reading the pg_authid [https://www.postgresql.org/docs/current/catalog-pg-authid.html] role password (even when encrypted) is
restricted to roles with the superuser status. Reading this catalog
table is done when calling pg_dumpall --roles-only so that the dump
file can then be used to restore roles including their passwords.

	Most of the available Postgres extensions, at least when being written
in C, are then only allowed to be created by roles with superuser
status.

When such an extension contains Extension Configuration Tables [https://www.postgresql.org/docs/current/extend-extensions.html#EXTEND-EXTENSIONS-CONFIG-TABLES] and
has been created with a role having superuser status, then the same
superuser status is needed again to pg_dump and pg_restore that
extension and its current configuration.

When using pgcopydb it is possible to split your migration in privileged and
non-privileged parts, like in the following examples:

 1 $ coproc (pgcopydb snapshot)
 2
 3 # first two commands would use a superuser role to connect
 4 $ pgcopydb copy roles --source ... --target ...
 5 $ pgcopydb copy extensions --source ... --target ...
 6
 7 # now it's possible to use a non-superuser role to connect
 8 $ pgcopydb clone --skip-extensions --source ... --target ...
 9
10 $ kill -TERM ${COPROC_PID}
11 $ wait ${COPROC_PID}

In such a script, the calls to pgcopydb copy roles and
pgcopydb copy extensions would be done with connection strings that
connects with a role having superuser status; and then the call to pgcopydb
clone would be done with a non-privileged role, typically the role that
owns the source and target databases.

Warning

That said, there is currently a limitation in pg_dump that impacts
pgcopydb. When an extension with configuration table has been installed
as superuser, even the main pgcopydb clone operation has to be done
with superuser status.

That’s because pg_dump filtering (here, there --exclude-table option)
does not apply to extension members, and pg_dump does not provide a
mechanism to exclude extensions.

Change Data Capture using Postgres Logical Decoding

When using the --follow option the steps from the pgcopydb follow
command are also run concurrently to the main copy. The Change Data Capture
is then automatically driven from a prefetch-only phase to the
prefetch-and-catchup phase, which is enabled as soon as the base copy is
done.

See the command pgcopydb stream sentinel set endpos to remote control
the follow parts of the command even while the command is already running.

The command pgcopydb stream cleanup must be used to free resources
created to support the change data capture process.

Important

Make sure to read the documentation for pgcopydb follow and the
specifics about Logical Replication Restrictions [https://www.postgresql.org/docs/current/logical-replication-restrictions.html] as documented by
Postgres.

Change Data Capture Example 1

A simple approach to applying changes after the initial base copy has been
done follows:

1 $ pgcopydb clone --follow &
2
3 # later when the application is ready to make the switch
4 $ pgcopydb stream sentinel set endpos --current
5
6 # later when the migration is finished, clean-up both source and target
7 $ pgcopydb stream cleanup

Change Data Capture Example 2

In some cases, it might be necessary to have more control over some of the
steps taken here. Given pgcopydb flexibility, it’s possible to implement the
following steps:

	Grab a snapshot from the source database and hold an open Postgres
connection for the duration of the base copy.

In case of crash or other problems with the main operations, it’s then
possible to resume processing of the base copy and the applying of the
changes with the same snapshot again.

This step is also implemented when using pgcopydb clone --follow.
That said, if the command was interrupted (or crashed), then the
snapshot would be lost.

	Setup the logical decoding within the snapshot obtained in the previous
step, and the replication tracking on the target database.

The following SQL objects are then created:

	a replication slot on the source database,

	a pgcopydb.sentinel table on the source database,

	a replication origin on the target database.

This step is also implemented when using pgcopydb clone --follow.
There is no way to implement Change Data Capture with pgcopydb and skip
creating those SQL objects.

	Start the base copy of the source database, and prefetch logical
decoding changes to ensure that we consume from the replication slot
and allow the source database server to recycle its WAL files.

	Remote control the apply process to stop consuming changes and applying
them on the target database.

	Re-sync the sequences to their now-current values.

Sequences are not handled by Postgres logical decoding, so extra care
needs to be implemented manually here.

Important

The next version of pgcopydb will include that step in the
pgcopydb clone --snapshot command automatically, after it stops
consuming changes and before the process terminates.

	Clean-up the specific resources created for supporting resumability of
the whole process (replication slot on the source database, pgcopydb
sentinel table on the source database, replication origin on the target
database).

	Stop holding a snaphot on the source database by stopping the
pgcopydb snapshot process left running in the background.

If the command pgcopydb clone --follow fails it’s then possible to start
it again. It will automatically discover what was done successfully and what
needs to be done again because it failed or was interrupted (table copy,
index creation, resuming replication slot consuming, resuming applying
changes at the right LSN position, etc).

Here is an example implement the previous steps:

 1 $ pgcopydb snapshot &
 2
 3 $ pgcopydb stream setup
 4
 5 $ pgcopydb clone --follow &
 6
 7 # later when the application is ready to make the switch
 8 $ pgcopydb stream sentinel set endpos --current
 9
10 # when the follow process has terminated, re-sync the sequences
11 $ pgcopydb copy sequences
12
13 # later when the migration is finished, clean-up both source and target
14 $ pgcopydb stream cleanup
15
16 # now stop holding the snapshot transaction (adjust PID to your environment)
17 $ kill %1

Options

The following options are available to pgcopydb clone:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--table-jobs

	How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be
running at the same time that this limit while the CREATE INDEX operations
are in progress, though then the processes are only waiting for the target
Postgres instance to do all the work.

	--index-jobs

	How many indexes can be built in parallel, globally. A good option is to
set this option to the count of CPU cores that are available on the
Postgres target system, minus some cores that are going to be used for
handling the COPY operations.

	--split-tables-larger-than

	Allow Same-table Concurrency when processing the source database.
This environment variable value is expected to be a byte size, and bytes
units B, kB, MB, GB, TB, PB, and EB are known.

	--drop-if-exists

	When restoring the schema on the target Postgres instance, pgcopydb
actually uses pg_restore. When this options is specified, then the
following pg_restore options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row,
either to fix a previous mistake or for instance when used in a continuous
integration system.

This option causes DROP TABLE and DROP INDEX and other DROP
commands to be used. Make sure you understand what you’re doing here!

	--roles

	The option --roles add a preliminary step that copies the roles found
on the source instance to the target instance. As Postgres roles are
global object, they do not exist only within the context of a specific
database, so all the roles are copied over when using this option.

The pg_dumpall --roles-only is used to fetch the list of roles from
the source database, and this command includes support for passwords. As a
result, this operation requires the superuser privileges.

See also pgcopydb copy roles.

	--no-owner

	Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET
SESSION AUTHORIZATION statements to set ownership of created schema
elements. These statements will fail unless the initial connection to the
database is made by a superuser (or the same user that owns all of the
objects in the script). With --no-owner, any user name can be used for
the initial connection, and this user will own all the created objects.

	--skip-large-objects

	Skip copying large objects, also known as blobs, when copying the data
from the source database to the target database.

	--skip-extensions

	Skip copying extensions from the source database to the target database.

When used, schema that extensions depend-on are also skipped: it is
expected that creating needed extensions on the target system is then the
responsibility of another command (such as
pgcopydb copy extensions), and schemas that extensions depend-on
are part of that responsibility.

Because creating extensions require superuser, this allows a multi-steps
approach where extensions are dealt with superuser privileges, and then
the rest of the pgcopydb operations are done without superuser privileges.

	--filters <filename>

	This option allows to exclude table and indexes from the copy operations.
See Filtering for details about the expected file format and the
filtering options available.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--follow

	When the --follow option is used then pgcopydb implements Change Data
Capture as detailed in the manual page for pgcopydb follow in
parallel to the main copy database steps.

The replication slot is created using the same snapshot as the main
database copy operation, and the changes to the source database are
prefetched only during the initial copy, then prefetched and applied in a
catchup process.

It is possible to give pgcopydb clone --follow a termination point
(the LSN endpos) while the command is running with the command
pgcopydb stream sentinel set endpos.

	--slot-name

	Logical replication slot to use. At the moment pgcopydb doesn’t know how
to create the logical replication slot itself. The slot should be created
within the same transaction snapshot as the initial data copy.

Must be using the wal2json [https://github.com/eulerto/wal2json/] output plugin, available with
format-version 2.

	--create-slot

	Instruct pgcopydb to create the logical replication slot to use.

	--endpos

	Logical replication target LSN to use. Automatically stop replication and
exit with normal exit status 0 when receiving reaches the specified LSN.
If there’s a record with LSN exactly equal to lsn, the record will be
output.

The --endpos option is not aware of transaction boundaries and may
truncate output partway through a transaction. Any partially output
transaction will not be consumed and will be replayed again when the slot
is next read from. Individual messages are never truncated.

See also documentation for pg_recvlogical [https://www.postgresql.org/docs/current/app-pgrecvlogical.html].

	--origin

	Logical replication target system needs to track the transactions that
have been applied already, so that in case we get disconnected or need to
resume operations we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in
Replication Progress Tracking [https://www.postgresql.org/docs/current/replication-origins.html]. This option allows to pick your own
node name and defaults to “pgcopydb”. Picking a different name is useful
in some advanced scenarios like migrating several sources in the same
target, where each source should have their own unique origin node name.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel.
When --table-jobs is ommitted from the command line, then this
environment variable is used.

PGCOPYDB_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in
parallel. When --index-jobs is ommitted from the command line, then
this environment variable is used.

PGCOPYDB_SPLIT_TABLES_LARGER_THAN

Allow Same-table Concurrency when processing the source database.
This environment variable value is expected to be a byte size, and bytes
units B, kB, MB, GB, TB, PB, and EB are known.

When --split-tables-larger-than is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

XDG_DATA_HOME

The standard XDG Base Directory Specification [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html] defines several
environment variables that allow controling where programs should store
their files.

XDG_DATA_HOME defines the base directory relative to which user-specific
data files should be stored. If $XDG_DATA_HOME is either not set or empty,
a default equal to $HOME/.local/share should be used.

When using Change Data Capture (through --follow option and Postgres
logical decoding with wal2json [https://github.com/eulerto/wal2json/]) then pgcopydb pre-fetches changes in
JSON files and transform them into SQL files to apply to the target
database.

These files are stored at the following location, tried in this order:

	when --dir is used, then pgcopydb uses the cdc subdirectory
of the --dir location,

	when XDG_DATA_HOME is set in the environment, then pgcopydb uses
that location,

	when neither of the previous settings have been used then pgcopydb
defaults to using ${HOME}/.local/share.

Examples

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"
$ export PGCOPYDB_DROP_IF_EXISTS=on

$ pgcopydb clone --table-jobs 8 --index-jobs 12
13:09:08 81987 INFO Running pgcopydb version 0.8.21.gacd2795.dirty from "/Applications/Postgres.app/Contents/Versions/12/bin/pgcopydb"
13:09:08 81987 INFO [SOURCE] Copying database from "postgres://@:/pagila?"
13:09:08 81987 INFO [TARGET] Copying database into "postgres://@:/plop?"
13:09:08 81987 INFO Using work dir "/var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb"
13:09:08 81987 INFO Exported snapshot "00000003-00076012-1" from the source database
13:09:08 81991 INFO STEP 1: dump the source database schema (pre/post data)
13:09:08 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --snapshot 00000003-00076012-1 --section pre-data --file /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/pre.dump 'postgres://@:/pagila?'
13:09:08 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --snapshot 00000003-00076012-1 --section post-data --file /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/post.dump 'postgres://@:/pagila?'
13:09:08 81991 INFO STEP 2: restore the pre-data section to the target database
13:09:09 81991 INFO Listing ordinary tables in source database
13:09:09 81991 INFO Fetched information for 21 tables, with an estimated total of 46 248 tuples and 3776 kB
13:09:09 81991 INFO Fetching information for 13 sequences
13:09:09 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'postgres://@:/plop?' --single-transaction --clean --if-exists --use-list /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/pre.list /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/pre.dump
13:09:09 81991 INFO STEP 3: copy data from source to target in sub-processes
13:09:09 81991 INFO STEP 4: create indexes and constraints in parallel
13:09:09 81991 INFO STEP 5: vacuum analyze each table
13:09:09 81991 INFO Now starting 8 processes
13:09:09 81991 INFO Reset sequences values on the target database
13:09:09 82003 INFO COPY "public"."rental"
13:09:09 82004 INFO COPY "public"."film"
13:09:09 82009 INFO COPY "public"."payment_p2020_04"
13:09:09 82002 INFO Copying large objects
13:09:09 82007 INFO COPY "public"."payment_p2020_03"
13:09:09 82010 INFO COPY "public"."film_actor"
13:09:09 82005 INFO COPY "public"."inventory"
13:09:09 82014 INFO COPY "public"."payment_p2020_02"
13:09:09 82012 INFO COPY "public"."customer"
13:09:09 82009 INFO Creating 3 indexes for table "public"."payment_p2020_04"
13:09:09 82010 INFO Creating 2 indexes for table "public"."film_actor"
13:09:09 82007 INFO Creating 3 indexes for table "public"."payment_p2020_03"
13:09:09 82004 INFO Creating 5 indexes for table "public"."film"
13:09:09 82005 INFO Creating 2 indexes for table "public"."inventory"
13:09:09 82033 INFO VACUUM ANALYZE "public"."payment_p2020_04";
13:09:09 82036 INFO VACUUM ANALYZE "public"."film_actor";
13:09:09 82039 INFO VACUUM ANALYZE "public"."payment_p2020_03";
13:09:09 82041 INFO VACUUM ANALYZE "public"."film";
13:09:09 82043 INFO VACUUM ANALYZE "public"."inventory";
...
...
...
13:09:09 81991 INFO STEP 7: restore the post-data section to the target database
13:09:09 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'postgres://@:/plop?' --single-transaction --clean --if-exists --use-list /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/post.list /var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/schema/post.dump

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 355ms 1
 Prepare Schema target 135ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 641ms 8 + 12
 COPY (cumulative) both 1s598 8
 Large Objects (cumulative) both 29ms 1
 CREATE INDEX, CONSTRAINTS (cumulative) target 4s072 12
 Finalize Schema target 366ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 1s499 8 + 12
 --- ---------- ---------- ------------

pgcopydb follow

The command pgcopydb follow replays the database changes registered at
the source database with the logical decoding pluing wal2json [https://github.com/eulerto/wal2json/] into the
target database.

Important

While the pgcopydb follow is a full client for the logical decoding
plugin wal2json, the general use case involves using pgcopydb clone
--follow as documented in Change Data Capture using Postgres Logical Decoding.

When using Logical Decoding with pgcopydb or another tool, consider making
sure you’re familiar with the Logical Replication Restrictions [https://www.postgresql.org/docs/current/logical-replication-restrictions.html] that
apply. In particular:

	DDL are not replicated.

When using DDL for partition scheme maintenance, such as when using the
pg_partman [https://github.com/pgpartman/pg_partman] extension, then consider creating a week or a month of
partitions in advance, so that creating new partitions does not happen
during the migration window.

	Sequence data is not replicated.

When using pgcopydb clone --follow (starting with pgcopydb version
0.9) then the sequence data is synced at the end of the operation, after
the cutover point implemented via the
pgcopydb stream sentinel set endpos.

Updating the sequences manually is also possible by running the command
pgcopydb copy sequences.

	Large Objects are not replicated.

See the Postgres documentation page for Logical Replication Restrictions [https://www.postgresql.org/docs/current/logical-replication-restrictions.html]
to read the exhaustive list of restrictions.

pgcopydb follow

pgcopydb follow: Replay changes from the source database to the target database
usage: pgcopydb follow --source ... --target ...

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --slot-name Use this Postgres replication slot name
 --create-slot Create the replication slot
 --origin Use this Postgres replication origin node name
 --endpos Stop replaying changes when reaching this LSN

Description

This command runs two concurrent subprocesses.

	The first one pre-fetches the changes from the source database using
the Postgres Logical Decoding protocol and save the JSON messages in
local JSON files.

The logical decoding plugin wal2json [https://github.com/eulerto/wal2json/] must be available on the
source database system.

Each time a JSON file is closed, an auxilliary process is started to
transform the JSON file into a matching SQL file. This processing is
done in the background, and the main receiver process only waits for
the transformation process to be finished when there is a new JSON file
to transform.

In other words, only one such transform process can be started in the
background, and the process is blocking when a second one could get
started.

The design model here is based on the assumption that receiving the
next set of JSON messages that fills-up a whole JSON file is going to
take more time than transforming the JSON file into an SQL file. When
that assumption proves wrong, consider opening an issue on the github
project for pgcopydb.

	The second process catches-up with changes happening on the source
database by applying the SQL files to the target database system.

The Postgres API for Replication Progress Tracking [https://www.postgresql.org/docs/current//replication-origins.html] is used in that
process so that we can skip already applied transactions at restart or
resume.

It is possible to start the pgcopydb follow command and then later,
while it’s still running, set the LSN for the end position with the same
effect as using the command line option --endpos, or switch from
prefetch mode only to prefetch and catchup mode. For that, see the commands
pgcopydb stream sentinel set endpos,
pgcopydb stream sentinel set apply, and
pgcopydb stream sentinel set prefetch.

Note that in many case the --endpos LSN position is not known at the
start of this command. Also before entering the prefetch and apply mode it
is important to make sure that the initial base copy is finished.

Finally, it is also possible to setup the streaming replication options
before using the pgcopydb follow command: see the
pgcopydb stream setup and pgcopydb stream cleanup commands.

Replica Identity and lack of Primary Keys

Postgres Logical Decoding works with replaying changes using SQL statements,
and for that exposes the concept of Replica Identity as described in the
documentation for the ALTER TABLE … REPLICA IDENTITY [https://www.postgresql.org/docs/current/sql-altertable.html] command.

To quote Postgres docs:

This form changes the information which is written to the write-ahead
log to identify rows which are updated or deleted. In most cases, the old
value of each column is only logged if it differs from the new value;
however, if the old value is stored externally, it is always logged
regardless of whether it changed. This option has no effect except when
logical replication is in use.

To support Change Data Capture with Postgres Logical Decoding for tables
that do not have a Primary Key, then it is necessary to use the ALTER
TABLE ... REPLICA IDENTITY command for those tables.

In practice the two following options are to be considered:

	REPLICA IDENTITY USING INDEX index_name

This form is prefered when a UNIQUE index exists for the table without a
primary key. The index must be unique, not partial, not deferrable, and
include only columns marked NOT NULL.

	REPLICA IDENTITY FULL

When this is used on a table, then the WAL records contain the old
values of all columns in the row.

Logical Decoding Pre-Fetching

When using pgcopydb clone --follow a logical replication slot is created
on the source database before the initial COPY, using the same Postgres
snapshot. This ensure data consistency.

Within the pgcopydb clone --follow approach, it is only possible to
start applying the changes from the source database after the initial COPY
has finished on the target database.

Also, from the Postgres documentation we read that Postgres replication
slots [https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS] provide an automated way to ensure that the primary does not remove
WAL segments until they have been received by all standbys.

Accumulating WAL segments on the primary during the whole duration of the
initial COPY involves capacity hazards, which translate into potential File
System is Full errors on the WAL disk of the source database. It is crucial
to avoid such a situation.

This is why pgcopydb implements CDC pre-fetching. In parallel to the initial
COPY the command pgcopydb clone --follow pre-fetches the changes in
local JSON and SQL files. Those files are placed in the XDG_DATA_HOME
location, which could be a mount point for an infinite Blob Storage area.

The pgcopydb follow command is a convenience command that’s available as
a logical decoding client for the wal2json plugin, and it shares the same
implementation as the pgcopydb clone --follow command. As a result, the
pre-fetching strategy is also relevant to the pgcopydb follow command.

The sentinel table, or the Remote Control

To track progress and allow resuming of operations, pgcopydb uses a sentinel
table on the source database. The sentinel table consists of a single row
with the following fields:

$ pgcopydb stream sentinel get
startpos 1/8D173AF8
endpos 0/0
apply disabled
write_lsn 0/0
flush_lsn 0/0
replay_lsn 0/0

Note that you can use the command pgcopydb stream sentinel get --json to
fetch a JSON formatted output, such as the following:

{
 "startpos": "1/8D173AF8",
 "endpos": "1/8D173AF8",
 "apply": false,
 "write_lsn": "0/0",
 "flush_lsn": "0/0",
 "replay_lsn": "0/0"
}

The first three fields (startpos, endpos, apply) are specific to pgcopydb,
then the following three fields (write_lsn, flush_lsn, replay_lsn) follow
the Postgres replication protocol as visible in the docs for the
pg_stat_replication [https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-VIEW] function.

	startpos

The startpos field is the current LSN on the source database at the time
when the Change Data Capture is setup in pgcopydb, such as when using the
pgcopydb stream setup command.

Note that both the pgcopydb follow and the pgcopydb clone --follow
command implement the setup parts if the pgcopydb stream setup has not
been used already.

	endpos

The endpos field is last LSN position from the source database that
pgcopydb replays. The command pgcopydb follow (or pgcopydb clone
--follow) stops when reaching beyond this LSN position.

The endpos can be set at the start of the process, which is useful
for unit testing, or while the command is running, which is useful in
production to define a cutover point.

To define the endpos while the command is running, use
pgcopydb stream sentinel set endpos.

	apply

The apply field is a boolean (enabled/disabled) that control the catchup
process. The pgcopydb catchup process replays the changes only when the
apply boolean is set to true.

The pgcopydb clone --follow command automatically enables the apply
field of the sentinel table as soon as the initial COPY is done.

To manually control the apply field, use the
pgcopydb stream sentinel set apply command.

	write_lsn

The Postgres documentation for pg_stat_replication.write_lsn is:
Last write-ahead log location written to disk by this standby server.

In the pgcopydb case, the sentinel field write_lsn is the position that
has been written to disk (as JSON) by the streaming process.

	flush_lsn

The Postgres documentation for pg_stat_replication.flush_lsn is:
Last write-ahead log location flushed to disk by this standby server

In the pgcopydb case, the sentinel field flush_lsn is the position that
has been written and then fsync’ed to disk (as JSON) by the streaming
process.

	replay_lsn

The Postgres documentation for pg_stat_replication.replay_lsn is:
Last write-ahead log location replayed into the database on this standby server

In the pgcopydb case, the sentinel field replay_lsn is the position that
has been applied to the target database, as kept track from the WAL.json
and then the WAL.sql files, and using the Postgres API for Replication
Progress Tracking [https://www.postgresql.org/docs/current//replication-origins.html].

The replay_lsn is also shared by the pgcopydb streaming process that
uses the Postgres logical replication protocol, so the
pg_stat_replication [https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-VIEW] entry associated with the replication slot used
by pgcopydb can be used to monitor replication lag.

As the pgcopydb streaming processes maintain the sentinel table on the
source database, it is also possible to use it to keep track of the logical
replication progress.

Options

The following options are available to pgcopydb follow:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--slot-name

	Logical replication slot to use. At the moment pgcopydb doesn’t know how
to create the logical replication slot itself. The slot should be created
within the same transaction snapshot as the initial data copy.

Must be using the wal2json [https://github.com/eulerto/wal2json/] output plugin, available with
format-version 2.

	--create-slot

	Instruct pgcopydb to create the logical replication slot to use.

	--endpos

	Logical replication target LSN to use. Automatically stop replication and
exit with normal exit status 0 when receiving reaches the specified LSN.
If there’s a record with LSN exactly equal to lsn, the record will be
output.

The --endpos option is not aware of transaction boundaries and may
truncate output partway through a transaction. Any partially output
transaction will not be consumed and will be replayed again when the slot
is next read from. Individual messages are never truncated.

See also documentation for pg_recvlogical [https://www.postgresql.org/docs/current/app-pgrecvlogical.html].

	--origin

	Logical replication target system needs to track the transactions that
have been applied already, so that in case we get disconnected or need to
resume operations we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in
Replication Progress Tracking [https://www.postgresql.org/docs/current/replication-origins.html]. This option allows to pick your own
node name and defaults to “pgcopydb”. Picking a different name is useful
in some advanced scenarios like migrating several sources in the same
target, where each source should have their own unique origin node name.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

XDG_DATA_HOME

The standard XDG Base Directory Specification [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html] defines several
environment variables that allow controling where programs should store
their files.

XDG_DATA_HOME defines the base directory relative to which user-specific
data files should be stored. If $XDG_DATA_HOME is either not set or empty,
a default equal to $HOME/.local/share should be used.

When using Change Data Capture (through --follow option and Postgres
logical decoding with wal2json [https://github.com/eulerto/wal2json/]) then pgcopydb pre-fetches changes in
JSON files and transform them into SQL files to apply to the target
database.

These files are stored at the following location, tried in this order:

	when --dir is used, then pgcopydb uses the cdc subdirectory
of the --dir location,

	when XDG_DATA_HOME is set in the environment, then pgcopydb uses
that location,

	when neither of the previous settings have been used then pgcopydb
defaults to using ${HOME}/.local/share.

pgcopydb snapshot

pgcopydb snapshot - Create and exports a snapshot on the source database

The command pgcopydb snapshot connects to the source database and
executes a SQL query to export a snapshot. The obtained snapshot is both
printed on stdout and also in a file where other pgcopydb commands might
expect to find it.

pgcopydb snapshot: Create and exports a snapshot on the source database
usage: pgcopydb snapshot --source ...

 --source Postgres URI to the source database
 --dir Work directory to use

Options

The following options are available to pgcopydb create and pgcopydb
drop subcommands:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--slot-name

	Logical replication slot name to use, default to pgcopydb. The slot
should be created within the same transaction snapshot as the initial data
copy.

Must be using the wal2json [https://github.com/eulerto/wal2json/] output plugin, available with
format-version 2.

	--origin

	Logical replication target system needs to track the transactions that
have been applied already, so that in case we get disconnected or need to
resume operations we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in
Replication Progress Tracking [https://www.postgresql.org/docs/current/replication-origins.html]. This option allows to pick your own
node name and defaults to “pgcopydb”. Picking a different name is useful
in some advanced scenarios like migrating several sources in the same
target, where each source should have their own unique origin node name.

	--startpos

	Logical replication target system registers progress by assigning a
current LSN to the --origin node name. When creating an origin on the
target database system, it is required to provide the current LSN from the
source database system, in order to properly bootstrap pgcopydb logical
decoding.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

Examples

Create a snapshot on the source database in the background:

$ pgcopydb snapshot &
[1] 72938
17:31:52 72938 INFO Running pgcopydb version 0.7.13.gcbf2d16.dirty from "/Users/dim/dev/PostgreSQL/pgcopydb/./src/bin/pgcopydb/pgcopydb"
17:31:52 72938 INFO Using work dir "/var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb"
17:31:52 72938 INFO Removing the stale pid file "/var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb/pgcopydb.aux.pid"
17:31:52 72938 INFO Work directory "/var/folders/d7/zzxmgs9s16gdxxcm0hs0sssw0000gn/T//pgcopydb" already exists
17:31:52 72938 INFO Exported snapshot "00000003-000CB5FE-1" from the source database
00000003-000CB5FE-1

And when the process is done, stop maintaining the snapshot in the
background:

$ kill %1
17:31:56 72938 INFO Asked to terminate, aborting
[1]+ Done pgcopydb snapshot

pgcopydb copy

pgcopydb copy - Implement the data section of the database copy

This command prefixes the following sub-commands:

pgcopydb copy
 db Copy an entire database from source to target
 roles Copy the roles from the source instance to the target instance
 extensions Copy the extensions from the source instance to the target instance
 schema Copy the database schema from source to target
 data Copy the data section from source to target
 table-data Copy the data from all tables in database from source to target
 blobs Copy the blob data from ther source database to the target
 sequences Copy the current value from all sequences in database from source to target
 indexes Create all the indexes found in the source database in the target
 constraints Create all the constraints found in the source database in the target

Those commands implement a part of the whole database copy operation as
detailed in section pgcopydb clone. Only use those commands to debug
a specific part, or because you know that you just want to implement that
step.

Warning

Using the pgcopydb clone command is strongly advised.

This mode of operations is useful for debugging and advanced use cases
only.

pgcopydb copy db

pgcopydb copy db - Copy an entire database from source to target

The command pgcopydb copy db is an alias for pgcopydb clone. See
also pgcopydb clone.

pgcopydb copy db: Copy an entire database from source to target
usage: pgcopydb copy db --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --drop-if-exists On the target database, clean-up from a previous run first
 --roles Also copy roles found on source to target
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --skip-large-objects Skip copying large objects (blobs)
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy roles

pgcopydb copy roles - Copy the roles from the source instance to the target instance

The command pgcopydb copy roles implements both
pgcopydb dump roles and then pgcopydb restore roles.

pgcopydb copy roles: Copy the roles from the source instance to the target instance
usage: pgcopydb copy roles --source ... --target ...

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use

Note

In Postgres, roles are a global object. This means roles do not belong to
any specific database, and as a result, even when the pgcopydb tool
otherwise works only in the context of a specific database, this command
is not limited to roles that are used within a single database.

When a role already exists on the target database, its restoring is entirely
skipped, which includes skipping both the CREATE ROLE and the ALTER
ROLE commands produced by pg_dumpall --roles-only.

The pg_dumpall --roles-only is used to fetch the list of roles from the
source database, and this command includes support for passwords. As a
result, this operation requires the superuser privileges.

pgcopydb copy extensions

pgcopydb copy extensions - Copy the extensions from the source instance to the target instance

The command pgcopydb copy extensions gets a list of the extensions
installed on the source database, and for each of them run the SQL command
CREATE EXTENSION IF NOT EXISTS.

pgcopydb copy extensions: Copy the extensions from the source instance to the target instance
usage: pgcopydb copy extensions --source ... --target ...

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use

When copying extensions, this command also takes care of copying any
Extension Configuration Tables [https://www.postgresql.org/docs/current/extend-extensions.html#EXTEND-EXTENSIONS-CONFIG-TABLES] user-data to the target database.

pgcopydb copy schema

pgcopydb copy schema - Copy the database schema from source to target

The command pgcopydb copy schema implements the schema only section of
the clone steps.

pgcopydb copy schema: Copy the database schema from source to target
usage: pgcopydb copy schema --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy data

pgcopydb copy data - Copy the data section from source to target

The command pgcopydb copy data implements the data section of the clone
steps.

pgcopydb copy data: Copy the data section from source to target
usage: pgcopydb copy data --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --skip-large-objects Skip copying large objects (blobs)
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

Note

The current command line has both the commands pgcopydb copy
table-data and pgcopydb copy data, which are looking quite similar
but implement different steps. Be careful for now. This will change
later.

The pgcopydb copy data command implements the following steps:

$ pgcopydb copy table-data
$ pgcopydb copy blobs
$ pgcopydb copy indexes
$ pgcopydb copy constraints
$ pgcopydb copy sequences
$ vacuumdb -z

Those steps are actually done concurrently to one another when that’s
possible, in the same way as the main command pgcopydb clone would.
The only difference is that the pgcopydb clone command also prepares
and finishes the schema parts of the operations (pre-data, then post-data),
which the pgcopydb copy data command ignores.

pgcopydb copy table-data

pgcopydb copy table-data - Copy the data from all tables in database from source to target

The command pgcopydb copy table-data fetches the list of tables from the
source database and runs a COPY TO command on the source database and sends
the result to the target database using a COPY FROM command directly,
avoiding disks entirely.

pgcopydb copy table-data: Copy the data from all tables in database from source to target
usage: pgcopydb copy table-data --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy blobs

pgcopydb copy blobs - Copy the blob data from ther source database to the target

The command pgcopydb copy blobs fetches list of large objects (aka
blobs) from the source database and copies their data parts to the target
database. By default the command assumes that the large objects metadata
have already been taken care of, because of the behaviour of
pg_dump --section=pre-data.

pgcopydb copy blobs: Copy the blob data from ther source database to the target
usage: pgcopydb copy blobs --source ... --target ...

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --drop-if-exists On the target database, drop and create large objects

pgcopydb copy sequences

pgcopydb copy sequences - Copy the current value from all sequences in database from source to target

The command pgcopydb copy sequences fetches the list of sequences from
the source database, then for each sequence fetches the last_value and
is_called properties the same way pg_dump would on the source database,
and then for each sequence call pg_catalog.setval() on the target
database.

pgcopydb copy sequences: Copy the current value from all sequences in database from source to target
usage: pgcopydb copy sequences --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb copy indexes

pgcopydb copy indexes - Create all the indexes found in the source database in the target

The command pgcopydb copy indexes fetches the list of indexes from the
source database and runs each index CREATE INDEX statement on the target
database. The statements for the index definitions are modified to include
IF NOT EXISTS and allow for skipping indexes that already exist on the
target database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target
usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb copy constraints

pgcopydb copy constraints - Create all the constraints found in the source database in the target

The command pgcopydb copy constraints fetches the list of indexes from
the source database and runs each index ALTER TABLE … ADD CONSTRAINT …
USING INDEX statement on the target database.

The indexes must already exist, and the command will fail if any constraint
is found existing already on the target database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target
usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source data

Description

These commands allow implementing a specific step of the pgcopydb operations
at a time. It’s useful mainly for debugging purposes, though some advanced
and creative usage can be made from the commands.

The target schema is not created, so it needs to have been taken care of
first. It is possible to use the commands pgcopydb dump schema and
then pgcopydb restore pre-data to prepare your target database.

To implement the same operations as a pgcopydb clone command would,
use the following recipe:

$ export PGCOPYDB_SOURCE_PGURI="postgres://user@source/dbname"
$ export PGCOPYDB_TARGET_PGURI="postgres://user@target/dbname"

$ pgcopydb dump schema
$ pgcopydb restore pre-data --resume --not-consistent
$ pgcopydb copy table-data --resume --not-consistent
$ pgcopydb copy sequences --resume --not-consistent
$ pgcopydb copy indexes --resume --not-consistent
$ pgcopydb copy constraints --resume --not-consistent
$ vacuumdb -z
$ pgcopydb restore post-data --resume --not-consistent

The main pgcopydb clone is still better at concurrency than doing
those steps manually, as it will create the indexes for any given table as
soon as the table-data section is finished, without having to wait until the
last table-data has been copied over. Same applies to constraints, and then
vacuum analyze.

Options

The following options are available to pgcopydb copy sub-commands:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--table-jobs

	How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be
running at the same time that this limit while the CREATE INDEX operations
are in progress, though then the processes are only waiting for the target
Postgres instance to do all the work.

	--index-jobs

	How many indexes can be built in parallel, globally. A good option is to
set this option to the count of CPU cores that are available on the
Postgres target system, minus some cores that are going to be used for
handling the COPY operations.

	--split-tables-larger-than

	Allow Same-table Concurrency when processing the source database.
This environment variable value is expected to be a byte size, and bytes
units B, kB, MB, GB, TB, PB, and EB are known.

	--skip-large-objects

	Skip copying large objects, also known as blobs, when copying the data
from the source database to the target database.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel.
When --table-jobs is ommitted from the command line, then this
environment variable is used.

PGCOPYDB_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in
parallel. When --index-jobs is ommitted from the command line, then
this environment variable is used.

PGCOPYDB_SPLIT_TABLES_LARGER_THAN

Allow Same-table Concurrency when processing the source database.
This environment variable value is expected to be a byte size, and bytes
units B, kB, MB, GB, TB, PB, and EB are known.

When --split-tables-larger-than is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

Examples

Let’s export the Postgres databases connection strings to make it easy to
re-use them all along:

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"

Now, first dump the schema:

$ pgcopydb dump schema
15:24:24 75511 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:24 75511 WARN Directory "/tmp/pgcopydb" already exists: removing it entirely
15:24:24 75511 INFO Dumping database from "port=54311 host=localhost dbname=pgloader"
15:24:24 75511 INFO Dumping database into directory "/tmp/pgcopydb"
15:24:24 75511 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
15:24:24 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/pgcopydb/schema/pre.dump 'port=54311 host=localhost dbname=pgloader'
15:24:25 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/pgcopydb/schema/post.dump 'port=54311 host=localhost dbname=pgloader'

Now restore the pre-data schema on the target database, cleaning up the
already existing objects if any, which allows running this test scenario
again and again. It might not be what you want to do in your production
target instance though!

PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore pre-data --no-owner
15:24:29 75591 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:29 75591 INFO Restoring database from "/tmp/pgcopydb"
15:24:29 75591 INFO Restoring database into "port=54311 dbname=plop"
15:24:29 75591 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:29 75591 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --clean --if-exists --no-owner /tmp/pgcopydb/schema/pre.dump

Then copy the data over:

$ pgcopydb copy table-data --resume --not-consistent
15:24:36 75688 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:36 75688 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:36 75688 INFO STEP 3: copy data from source to target in sub-processes
15:24:36 75688 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO Fetched information for 56 tables
...
 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 1s140 4
 CREATE INDEX (cumulative) target 0ms 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 2s143 4 + 4
 --- ---------- ---------- ------------

And now create the indexes on the target database, using the index
definitions from the source database:

$ pgcopydb copy indexes --resume --not-consistent
15:24:40 75918 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:40 75918 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:40 75918 INFO STEP 4: create indexes in parallel
15:24:40 75918 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO Fetched information for 56 tables
15:24:40 75930 INFO Creating 2 indexes for table "csv"."partial"
15:24:40 75922 INFO Creating 1 index for table "csv"."track"
15:24:40 75931 INFO Creating 1 index for table "err"."errors"
15:24:40 75928 INFO Creating 1 index for table "csv"."blocks"
15:24:40 75925 INFO Creating 1 index for table "public"."track_full"
15:24:40 76037 INFO CREATE INDEX IF NOT EXISTS partial_b_idx ON csv.partial USING btree (b);
15:24:40 76036 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_pkey ON csv.track USING btree (trackid);
15:24:40 76035 INFO CREATE UNIQUE INDEX IF NOT EXISTS partial_a_key ON csv.partial USING btree (a);
15:24:40 76038 INFO CREATE UNIQUE INDEX IF NOT EXISTS errors_pkey ON err.errors USING btree (a);
15:24:40 75987 INFO Creating 1 index for table "public"."xzero"
15:24:40 75969 INFO Creating 1 index for table "public"."csv_escape_mode"
15:24:40 75985 INFO Creating 1 index for table "public"."udc"
15:24:40 75965 INFO Creating 1 index for table "public"."allcols"
15:24:40 75981 INFO Creating 1 index for table "public"."serial"
15:24:40 76039 INFO CREATE INDEX IF NOT EXISTS blocks_ip4r_idx ON csv.blocks USING gist (iprange);
15:24:40 76040 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_full_pkey ON public.track_full USING btree (trackid);
15:24:40 75975 INFO Creating 1 index for table "public"."nullif"
15:24:40 76046 INFO CREATE UNIQUE INDEX IF NOT EXISTS xzero_pkey ON public.xzero USING btree (a);
15:24:40 76048 INFO CREATE UNIQUE INDEX IF NOT EXISTS udc_pkey ON public.udc USING btree (b);
15:24:40 76047 INFO CREATE UNIQUE INDEX IF NOT EXISTS csv_escape_mode_pkey ON public.csv_escape_mode USING btree (id);
15:24:40 76049 INFO CREATE UNIQUE INDEX IF NOT EXISTS allcols_pkey ON public.allcols USING btree (a);
15:24:40 76052 INFO CREATE UNIQUE INDEX IF NOT EXISTS nullif_pkey ON public."nullif" USING btree (id);
15:24:40 76050 INFO CREATE UNIQUE INDEX IF NOT EXISTS serial_pkey ON public.serial USING btree (a);

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 619ms 4
 CREATE INDEX (cumulative) target 1s023 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 400ms 4 + 4
 --- ---------- ---------- ------------

Now re-create the constraints (primary key, unique constraints) from the
source database schema into the target database:

$ pgcopydb copy constraints --resume --not-consistent
15:24:43 76095 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:43 76095 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:43 76095 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:43 76095 INFO STEP 4: create constraints
15:24:43 76095 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:43 76095 INFO Fetched information for 56 tables
15:24:43 76099 INFO ALTER TABLE "csv"."track" ADD CONSTRAINT "track_pkey" PRIMARY KEY USING INDEX "track_pkey";
15:24:43 76107 INFO ALTER TABLE "csv"."partial" ADD CONSTRAINT "partial_a_key" UNIQUE USING INDEX "partial_a_key";
15:24:43 76102 INFO ALTER TABLE "public"."track_full" ADD CONSTRAINT "track_full_pkey" PRIMARY KEY USING INDEX "track_full_pkey";
15:24:43 76142 INFO ALTER TABLE "public"."allcols" ADD CONSTRAINT "allcols_pkey" PRIMARY KEY USING INDEX "allcols_pkey";
15:24:43 76157 INFO ALTER TABLE "public"."serial" ADD CONSTRAINT "serial_pkey" PRIMARY KEY USING INDEX "serial_pkey";
15:24:43 76161 INFO ALTER TABLE "public"."xzero" ADD CONSTRAINT "xzero_pkey" PRIMARY KEY USING INDEX "xzero_pkey";
15:24:43 76146 INFO ALTER TABLE "public"."csv_escape_mode" ADD CONSTRAINT "csv_escape_mode_pkey" PRIMARY KEY USING INDEX "csv_escape_mode_pkey";
15:24:43 76154 INFO ALTER TABLE "public"."nullif" ADD CONSTRAINT "nullif_pkey" PRIMARY KEY USING INDEX "nullif_pkey";
15:24:43 76159 INFO ALTER TABLE "public"."udc" ADD CONSTRAINT "udc_pkey" PRIMARY KEY USING INDEX "udc_pkey";
15:24:43 76108 INFO ALTER TABLE "err"."errors" ADD CONSTRAINT "errors_pkey" PRIMARY KEY USING INDEX "errors_pkey";

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 605ms 4
 CREATE INDEX (cumulative) target 1s023 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 415ms 4 + 4
 --- ---------- ---------- ------------

The next step is a VACUUM ANALYZE on each table that’s been just filled-in
with the data, and for that we can just use the vacuumdb [https://www.postgresql.org/docs/current/app-vacuumdb.html] command from
Postgres:

$ vacuumdb --analyze --dbname "$PGCOPYDB_TARGET_PGURI" --jobs 4
vacuumdb: vacuuming database "plop"

Finally we can restore the post-data section of the schema:

$ pgcopydb restore post-data --resume --not-consistent
15:24:50 76328 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:50 76328 INFO Restoring database from "/tmp/pgcopydb"
15:24:50 76328 INFO Restoring database into "port=54311 dbname=plop"
15:24:50 76328 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:50 76328 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --use-list /tmp/pgcopydb/schema/post.list /tmp/pgcopydb/schema/post.dump

pgcopydb dump

pgcopydb dump - Dump database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb dump
 schema Dump source database schema as custom files in target directory
 pre-data Dump source database pre-data schema as custom files in target directory
 post-data Dump source database post-data schema as custom files in target directory
 roles Dump source database roles as custome file in work directory

pgcopydb dump schema

pgcopydb dump schema - Dump source database schema as custom files in target directory

The command pgcopydb dump schema uses pg_dump to export SQL schema
definitions from the given source Postgres instance.

pgcopydb dump schema: Dump source database schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --dir Work directory to use
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb dump pre-data

pgcopydb dump pre-data - Dump source database pre-data schema as custom files in target directory

The command pgcopydb dump pre-data uses pg_dump to export SQL schema
pre-data definitions from the given source Postgres instance.

pgcopydb dump pre-data: Dump source database pre-data schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --dir Work directory to use
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb dump post-data

pgcopydb dump post-data - Dump source database post-data schema as custom files in target directory

The command pgcopydb dump post-data uses pg_dump to export SQL schema
post-data definitions from the given source Postgres instance.

pgcopydb dump post-data: Dump source database post-data schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --dir Work directory to use
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb dump roles

pgcopydb dump roles - Dump source database roles as custome file in work directory

The command pgcopydb dump roles uses pg_dumpall –roles-only to export
SQL definitions of the roles found on the source Postgres instance.

pgcopydb dump roles: Dump source database roles as custome file in work directory
usage: pgcopydb dump roles --source <URI>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --dir Work directory to use

The pg_dumpall --roles-only is used to fetch the list of roles from the
source database, and this command includes support for passwords. As a
result, this operation requires the superuser privileges.

Description

The pgcopydb dump schema command implements the first step of the full
database migration and fetches the schema definitions from the source
database.

When the command runs, it calls pg_dump to get first the pre-data schema
output in a Postgres custom file, and then again to get the post-data schema
output in another Postgres custom file.

The output files are written to the schema sub-directory of the
--target directory.

The pgcopydb dump pre-data and pgcopydb dump post-data are limiting
their action to respectively the pre-data and the post-data sections of the
pg_dump.

Options

The following options are available to pgcopydb dump schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

Examples

First, using pgcopydb dump schema

$ pgcopydb dump schema --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/schema/pre.dump 'port=5501 dbname=demo'
09:35:22 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/schema/post.dump 'port=5501 dbname=demo'

Once the previous command is finished, the pg_dump output files can be found
in /tmp/target/schema and are named pre.dump and post.dump.
Other files and directories have been created.

$ find /tmp/target
/tmp/target
/tmp/target/pgcopydb.pid
/tmp/target/schema
/tmp/target/schema/post.dump
/tmp/target/schema/pre.dump
/tmp/target/run
/tmp/target/run/tables
/tmp/target/run/indexes

Then we have almost the same thing when using the other forms.

We can see that pgcopydb dump pre-data only does the pre-data section of
the dump.

$ pgcopydb dump pre-data --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/schema/pre.dump 'port=5501 dbname=demo'

And then pgcopydb dump post-data only does the post-data section of the
dump.

$ pgcopydb dump post-data --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/schema/post.dump 'port=5501 dbname=demo'

pgcopydb restore

pgcopydb restore - Restore database objects into a Postgres instance

This command prefixes the following sub-commands:

pgcopydb restore
 schema Restore a database schema from custom files to target database
 pre-data Restore a database pre-data schema from custom file to target database
 post-data Restore a database post-data schema from custom file to target database
 roles Restore database roles from SQL file to target database
 parse-list Parse pg_restore --list output from custom file

pgcopydb restore schema

pgcopydb restore schema - Restore a database schema from custom files to target database

The command pgcopydb restore schema uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore schema: Restore a database schema from custom files to target database
usage: pgcopydb restore schema --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore pre-data

pgcopydb restore pre-data - Restore a database pre-data schema from custom file to target database

The command pgcopydb restore pre-data uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore pre-data: Restore a database pre-data schema from custom file to target database
usage: pgcopydb restore pre-data --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore post-data

pgcopydb restore post-data - Restore a database post-data schema from custom file to target database

The command pgcopydb restore post-data uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore post-data: Restore a database post-data schema from custom file to target database
usage: pgcopydb restore post-data --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore roles

pgcopydb restore roles - Restore database roles from SQL file to target database

The command pgcopydb restore roles runs the commands from the SQL script
obtained from the command pgcopydb dump roles. Roles that already exist
on the target database are skipped.

The pg_dumpall command issues two lines per role, the first one is a
CREATE ROLE SQL command, the second one is an ALTER ROLE SQL
command. Both those lines are skipped when the role already exists on the
target database.

pgcopydb restore roles: Restore database roles from SQL file to target database
usage: pgcopydb restore roles --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use

pgcopydb restore parse-list

pgcopydb restore parse-list - Parse pg_restore –list output from custom file

The command pgcopydb restore parse-list outputs pg_restore to list the
archive catalog of the custom file format file that has been exported for
the post-data section.

When using the --filters option , then the source database connection is
used to grab all the dependend objects that should also be filtered, and the
output of the command shows those pg_restore catalog entries commented out.

A pg_restore archive catalog entry is commented out when its line starts
with a semi-colon character (;).

pgcopydb restore parse-list: Parse pg_restore --list output from custom file
usage: pgcopydb restore parse-list --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --filters <filename> Use the filters defined in <filename>
 --skip-extensions Skip restoring extensions
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

Description

The pgcopydb restore schema command implements the creation of SQL
objects in the target database, second and last steps of a full database
migration.

When the command runs, it calls pg_restore on the files found at the
expected location within the --target directory, which has typically
been created with the pgcopydb dump schema command.

The pgcopydb restore pre-data and pgcopydb restore post-data are
limiting their action to respectively the pre-data and the post-data files
in the source directory..

Options

The following options are available to pgcopydb restore schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--drop-if-exists

	When restoring the schema on the target Postgres instance, pgcopydb
actually uses pg_restore. When this options is specified, then the
following pg_restore options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row,
either to fix a previous mistake or for instance when used in a continuous
integration system.

This option causes DROP TABLE and DROP INDEX and other DROP
commands to be used. Make sure you understand what you’re doing here!

	--no-owner

	Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET
SESSION AUTHORIZATION statements to set ownership of created schema
elements. These statements will fail unless the initial connection to the
database is made by a superuser (or the same user that owns all of the
objects in the script). With --no-owner, any user name can be used for
the initial connection, and this user will own all the created objects.

	--filters <filename>

	This option allows to exclude table and indexes from the copy operations.
See Filtering for details about the expected file format and the
filtering options available.

	--skip-extensions

	Skip copying extensions from the source database to the target database.

When used, schema that extensions depend-on are also skipped: it is
expected that creating needed extensions on the target system is then the
responsibility of another command (such as
pgcopydb copy extensions), and schemas that extensions depend-on
are part of that responsibility.

Because creating extensions require superuser, this allows a multi-steps
approach where extensions are dealt with superuser privileges, and then
the rest of the pgcopydb operations are done without superuser privileges.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

Examples

First, using pgcopydb restore schema

$ PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore schema --source /tmp/target/ --target "port=54314 dbname=demo"
09:54:37 20401 INFO Restoring database from "/tmp/target/"
09:54:37 20401 INFO Restoring database into "port=54314 dbname=demo"
09:54:37 20401 INFO Found a stale pidfile at "/tmp/target//pgcopydb.pid"
09:54:37 20401 WARN Removing the stale pid file "/tmp/target//pgcopydb.pid"
09:54:37 20401 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
09:54:37 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean --if-exists /tmp/target//schema/pre.dump
09:54:38 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean --if-exists --use-list /tmp/target//schema/post.list /tmp/target//schema/post.dump

Then the pgcopydb restore pre-data and pgcopydb restore post-data
would look the same with just a single call to pg_restore instead of the
both of them.

Using pgcopydb restore parse-list it’s possible to review the filtering
options and see how pg_restore catalog entries are being commented-out.

$ cat ./tests/filtering/include.ini
[include-only-table]
public.actor
public.category
public.film
public.film_actor
public.film_category
public.language
public.rental

[exclude-index]
public.idx_store_id_film_id

[exclude-table-data]
public.rental

$ pgcopydb restore parse-list --dir /tmp/pagila/pgcopydb --resume --not-consistent --filters ./tests/filtering/include.ini
11:41:22 75175 INFO Running pgcopydb version 0.5.8.ge0d2038 from "/Users/dim/dev/PostgreSQL/pgcopydb/./src/bin/pgcopydb/pgcopydb"
11:41:22 75175 INFO [SOURCE] Restoring database from "postgres://@:54311/pagila?"
11:41:22 75175 INFO [TARGET] Restoring database into "postgres://@:54311/plop?"
11:41:22 75175 INFO Using work dir "/tmp/pagila/pgcopydb"
11:41:22 75175 INFO Removing the stale pid file "/tmp/pagila/pgcopydb/pgcopydb.pid"
11:41:22 75175 INFO Work directory "/tmp/pagila/pgcopydb" already exists
11:41:22 75175 INFO Schema dump for pre-data and post-data section have been done
11:41:22 75175 INFO Restoring database from existing files at "/tmp/pagila/pgcopydb"
11:41:22 75175 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
11:41:22 75175 INFO Exported snapshot "00000003-0003209A-1" from the source database
3242; 2606 317973 CONSTRAINT public actor actor_pkey postgres
;3258; 2606 317975 CONSTRAINT public address address_pkey postgres
3245; 2606 317977 CONSTRAINT public category category_pkey postgres
;3261; 2606 317979 CONSTRAINT public city city_pkey postgres
;3264; 2606 317981 CONSTRAINT public country country_pkey postgres
;3237; 2606 317983 CONSTRAINT public customer customer_pkey postgres
3253; 2606 317985 CONSTRAINT public film_actor film_actor_pkey postgres
3256; 2606 317987 CONSTRAINT public film_category film_category_pkey postgres
3248; 2606 317989 CONSTRAINT public film film_pkey postgres
;3267; 2606 317991 CONSTRAINT public inventory inventory_pkey postgres
3269; 2606 317993 CONSTRAINT public language language_pkey postgres
3293; 2606 317995 CONSTRAINT public rental rental_pkey postgres
;3295; 2606 317997 CONSTRAINT public staff staff_pkey postgres
;3298; 2606 317999 CONSTRAINT public store store_pkey postgres
3246; 1259 318000 INDEX public film_fulltext_idx postgres
3243; 1259 318001 INDEX public idx_actor_last_name postgres
;3238; 1259 318002 INDEX public idx_fk_address_id postgres
;3259; 1259 318003 INDEX public idx_fk_city_id postgres
;3262; 1259 318004 INDEX public idx_fk_country_id postgres
;3270; 1259 318005 INDEX public idx_fk_customer_id postgres
3254; 1259 318006 INDEX public idx_fk_film_id postgres
3290; 1259 318007 INDEX public idx_fk_inventory_id postgres
3249; 1259 318008 INDEX public idx_fk_language_id postgres
3250; 1259 318009 INDEX public idx_fk_original_language_id postgres
;3272; 1259 318010 INDEX public idx_fk_payment_p2020_01_customer_id postgres
;3271; 1259 318011 INDEX public idx_fk_staff_id postgres
;3273; 1259 318012 INDEX public idx_fk_payment_p2020_01_staff_id postgres
;3275; 1259 318013 INDEX public idx_fk_payment_p2020_02_customer_id postgres
;3276; 1259 318014 INDEX public idx_fk_payment_p2020_02_staff_id postgres
;3278; 1259 318015 INDEX public idx_fk_payment_p2020_03_customer_id postgres
;3279; 1259 318016 INDEX public idx_fk_payment_p2020_03_staff_id postgres
;3281; 1259 318017 INDEX public idx_fk_payment_p2020_04_customer_id postgres
;3282; 1259 318018 INDEX public idx_fk_payment_p2020_04_staff_id postgres
;3284; 1259 318019 INDEX public idx_fk_payment_p2020_05_customer_id postgres
;3285; 1259 318020 INDEX public idx_fk_payment_p2020_05_staff_id postgres
;3287; 1259 318021 INDEX public idx_fk_payment_p2020_06_customer_id postgres
;3288; 1259 318022 INDEX public idx_fk_payment_p2020_06_staff_id postgres
;3239; 1259 318023 INDEX public idx_fk_store_id postgres
;3240; 1259 318024 INDEX public idx_last_name postgres
;3265; 1259 318025 INDEX public idx_store_id_film_id postgres
3251; 1259 318026 INDEX public idx_title postgres
;3296; 1259 318027 INDEX public idx_unq_manager_staff_id postgres
3291; 1259 318028 INDEX public idx_unq_rental_rental_date_inventory_id_customer_id postgres
;3274; 1259 318029 INDEX public payment_p2020_01_customer_id_idx postgres
;3277; 1259 318030 INDEX public payment_p2020_02_customer_id_idx postgres
;3280; 1259 318031 INDEX public payment_p2020_03_customer_id_idx postgres
;3283; 1259 318032 INDEX public payment_p2020_04_customer_id_idx postgres
;3286; 1259 318033 INDEX public payment_p2020_05_customer_id_idx postgres
;3289; 1259 318034 INDEX public payment_p2020_06_customer_id_idx postgres
;3299; 0 0 INDEX ATTACH public idx_fk_payment_p2020_01_staff_id postgres
;3301; 0 0 INDEX ATTACH public idx_fk_payment_p2020_02_staff_id postgres
;3303; 0 0 INDEX ATTACH public idx_fk_payment_p2020_03_staff_id postgres
;3305; 0 0 INDEX ATTACH public idx_fk_payment_p2020_04_staff_id postgres
;3307; 0 0 INDEX ATTACH public idx_fk_payment_p2020_05_staff_id postgres
;3309; 0 0 INDEX ATTACH public idx_fk_payment_p2020_06_staff_id postgres
;3300; 0 0 INDEX ATTACH public payment_p2020_01_customer_id_idx postgres
;3302; 0 0 INDEX ATTACH public payment_p2020_02_customer_id_idx postgres
;3304; 0 0 INDEX ATTACH public payment_p2020_03_customer_id_idx postgres
;3306; 0 0 INDEX ATTACH public payment_p2020_04_customer_id_idx postgres
;3308; 0 0 INDEX ATTACH public payment_p2020_05_customer_id_idx postgres
;3310; 0 0 INDEX ATTACH public payment_p2020_06_customer_id_idx postgres
3350; 2620 318035 TRIGGER public film film_fulltext_trigger postgres
3348; 2620 318036 TRIGGER public actor last_updated postgres
;3354; 2620 318037 TRIGGER public address last_updated postgres
3349; 2620 318038 TRIGGER public category last_updated postgres
;3355; 2620 318039 TRIGGER public city last_updated postgres
;3356; 2620 318040 TRIGGER public country last_updated postgres
;3347; 2620 318041 TRIGGER public customer last_updated postgres
3351; 2620 318042 TRIGGER public film last_updated postgres
3352; 2620 318043 TRIGGER public film_actor last_updated postgres
3353; 2620 318044 TRIGGER public film_category last_updated postgres
;3357; 2620 318045 TRIGGER public inventory last_updated postgres
3358; 2620 318046 TRIGGER public language last_updated postgres
3359; 2620 318047 TRIGGER public rental last_updated postgres
;3360; 2620 318048 TRIGGER public staff last_updated postgres
;3361; 2620 318049 TRIGGER public store last_updated postgres
;3319; 2606 318050 FK CONSTRAINT public address address_city_id_fkey postgres
;3320; 2606 318055 FK CONSTRAINT public city city_country_id_fkey postgres
;3311; 2606 318060 FK CONSTRAINT public customer customer_address_id_fkey postgres
;3312; 2606 318065 FK CONSTRAINT public customer customer_store_id_fkey postgres
3315; 2606 318070 FK CONSTRAINT public film_actor film_actor_actor_id_fkey postgres
3316; 2606 318075 FK CONSTRAINT public film_actor film_actor_film_id_fkey postgres
3317; 2606 318080 FK CONSTRAINT public film_category film_category_category_id_fkey postgres
3318; 2606 318085 FK CONSTRAINT public film_category film_category_film_id_fkey postgres
3313; 2606 318090 FK CONSTRAINT public film film_language_id_fkey postgres
3314; 2606 318095 FK CONSTRAINT public film film_original_language_id_fkey postgres
;3321; 2606 318100 FK CONSTRAINT public inventory inventory_film_id_fkey postgres
;3322; 2606 318105 FK CONSTRAINT public inventory inventory_store_id_fkey postgres
;3323; 2606 318110 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_customer_id_fkey postgres
;3324; 2606 318115 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_rental_id_fkey postgres
;3325; 2606 318120 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_staff_id_fkey postgres
;3326; 2606 318125 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_customer_id_fkey postgres
;3327; 2606 318130 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_rental_id_fkey postgres
;3328; 2606 318135 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_staff_id_fkey postgres
;3329; 2606 318140 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_customer_id_fkey postgres
;3330; 2606 318145 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_rental_id_fkey postgres
;3331; 2606 318150 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_staff_id_fkey postgres
;3332; 2606 318155 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_customer_id_fkey postgres
;3333; 2606 318160 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_rental_id_fkey postgres
;3334; 2606 318165 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_staff_id_fkey postgres
;3335; 2606 318170 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_customer_id_fkey postgres
;3336; 2606 318175 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_rental_id_fkey postgres
;3337; 2606 318180 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_staff_id_fkey postgres
;3338; 2606 318185 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_customer_id_fkey postgres
;3339; 2606 318190 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_rental_id_fkey postgres
;3340; 2606 318195 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_staff_id_fkey postgres
;3341; 2606 318200 FK CONSTRAINT public rental rental_customer_id_fkey postgres
;3342; 2606 318205 FK CONSTRAINT public rental rental_inventory_id_fkey postgres
;3343; 2606 318210 FK CONSTRAINT public rental rental_staff_id_fkey postgres
;3344; 2606 318215 FK CONSTRAINT public staff staff_address_id_fkey postgres
;3345; 2606 318220 FK CONSTRAINT public staff staff_store_id_fkey postgres
;3346; 2606 318225 FK CONSTRAINT public store store_address_id_fkey postgres

pgcopydb list

pgcopydb list - List database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb list
 extensions List all the source extensions to copy
 tables List all the source tables to copy data from
 table-parts List a source table copy partitions
 sequences List all the source sequences to copy data from
 indexes List all the indexes to create again after copying the data
 depends List all the dependencies to filter-out
 schema List the schema to migrate, formatted in JSON
 progress List the progress

pgcopydb list extensions

pgcopydb list extensions - List all the source extensions to copy

The command pgcopydb list extensions connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
extensions to COPY to the target database.

pgcopydb list extensions: List all the source extensions to copy
usage: pgcopydb list extensions --source ...

 --source Postgres URI to the source database

pgcopydb list tables

pgcopydb list tables - List all the source tables to copy data from

The command pgcopydb list tables connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
tables to COPY the data from.

pgcopydb list tables: List all the source tables to copy data from
usage: pgcopydb list tables --source ...

 --source Postgres URI to the source database
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped
 --without-pkey List only tables that have no primary key

pgcopydb list table-parts

pgcopydb list table-parts - List a source table copy partitions

The command pgcopydb list table-parts connects to the source database
and executes a SQL query using the Postgres catalogs to get detailed
information about the given source table, and then another SQL query to
compute how to split this source table given the size threshold argument.

pgcopydb list table-parts: List a source table copy partitions
usage: pgcopydb list table-parts --source ...

 --source Postgres URI to the source database
 --schema-name Name of the schema where to find the table
 --table-name Name of the target table
 --split-tables-larger-than Size threshold to consider partitioning

pgcopydb list sequences

pgcopydb list sequences - List all the source sequences to copy data from

The command pgcopydb list sequences connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
sequences to COPY the data from.

pgcopydb list sequences: List all the source sequences to copy data from
usage: pgcopydb list sequences --source ...

 --source Postgres URI to the source database
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

pgcopydb list indexes

pgcopydb list indexes - List all the indexes to create again after copying the data

The command pgcopydb list indexes connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
indexes to COPY the data from.

pgcopydb list indexes: List all the indexes to create again after copying the data
usage: pgcopydb list indexes --source ... [--schema-name [--table-name]]

 --source Postgres URI to the source database
 --schema-name Name of the schema where to find the table
 --table-name Name of the target table
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

pgcopydb list depends

pgcopydb list depends - List all the dependencies to filter-out

The command pgcopydb list depends connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
objects that depend on excluded objects from the filtering rules.

pgcopydb list depends: List all the dependencies to filter-out
usage: pgcopydb list depends --source ... [--schema-name [--table-name]]

 --source Postgres URI to the source database
 --schema-name Name of the schema where to find the table
 --table-name Name of the target table
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

pgcopydb list schema

pgcopydb list schema - List the schema to migrate, formatted in JSON

The command pgcopydb list schema connects to the source database and
executes a SQL queries using the Postgres catalogs to get a list of the
tables, indexes, and sequences to migrate. The command then outputs a JSON
formatted string that contains detailed information about all those objects.

pgcopydb list schema: List the schema to migrate, formatted in JSON
usage: pgcopydb list schema --source ...

 --source Postgres URI to the source database
 --filter <filename> Use the filters defined in <filename>

pgcopydb list progress

pgcopydb list progress - List the progress

The command pgcopydb list progress reads the schema.json file in the
work directory, parses it, and then computes how many tables and indexes are
planned to be copied and created on the target database, how many have been
done already, and how many are in-progress.

When using the option --json the JSON formatted output also includes a
list of all the tables and indexes that are currently being processed.

pgcopydb list progress: List the progress
usage: pgcopydb list progress --source ...

 --source Postgres URI to the source database
 --json Format the output using JSON

Options

The following options are available to pgcopydb dump schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--schema-name

	Filter indexes from a given schema only.

	--table-name

	Filter indexes from a given table only (use --schema-name to fully
qualify the table).

	--without-pkey

	List only tables from the source database when they have no primary key
attached to their schema.

	--filter <filename>

	This option allows to skip objects in the list operations. See
Filtering for details about the expected file format and the
filtering options available.

	--list-skipped

	Instead of listing objects that are selected for copy by the filters
installed with the --filter option, list the objects that are going to
be skipped when using the filters.

	--json

	The output of the command is formatted in JSON, when supported. Ignored
otherwise.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

Examples

Listing the tables:

$ pgcopydb list tables
14:35:18 13827 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
14:35:19 13827 INFO Fetched information for 56 tables
 OID | Schema Name | Table Name | Est. Row Count | On-disk size
---------+----------------------+----------------------+-----------------+----------------
 17085 | csv | track | 3503 | 544 kB
 17098 | expected | track | 3503 | 544 kB
 17290 | expected | track_full | 3503 | 544 kB
 17276 | public | track_full | 3503 | 544 kB
 17016 | expected | districts | 440 | 72 kB
 17007 | public | districts | 440 | 72 kB
 16998 | csv | blocks | 460 | 48 kB
 17003 | expected | blocks | 460 | 48 kB
 17405 | csv | partial | 7 | 16 kB
 17323 | err | errors | 0 | 16 kB
 16396 | expected | allcols | 0 | 16 kB
 17265 | expected | csv | 0 | 16 kB
 17056 | expected | csv_escape_mode | 0 | 16 kB
 17331 | expected | errors | 0 | 16 kB
 17116 | expected | group | 0 | 16 kB
 17134 | expected | json | 0 | 16 kB
 17074 | expected | matching | 0 | 16 kB
 17201 | expected | nullif | 0 | 16 kB
 17229 | expected | nulls | 0 | 16 kB
 17417 | expected | partial | 0 | 16 kB
 17313 | expected | reg2013 | 0 | 16 kB
 17437 | expected | serial | 0 | 16 kB
 17247 | expected | sexp | 0 | 16 kB
 17378 | expected | test1 | 0 | 16 kB
 17454 | expected | udc | 0 | 16 kB
 17471 | expected | xzero | 0 | 16 kB
 17372 | nsitra | test1 | 0 | 16 kB
 16388 | public | allcols | 0 | 16 kB
 17256 | public | csv | 0 | 16 kB
 17047 | public | csv_escape_mode | 0 | 16 kB
 17107 | public | group | 0 | 16 kB
 17125 | public | json | 0 | 16 kB
 17065 | public | matching | 0 | 16 kB
 17192 | public | nullif | 0 | 16 kB
 17219 | public | nulls | 0 | 16 kB
 17307 | public | reg2013 | 0 | 16 kB
 17428 | public | serial | 0 | 16 kB
 17238 | public | sexp | 0 | 16 kB
 17446 | public | udc | 0 | 16 kB
 17463 | public | xzero | 0 | 16 kB
 17303 | expected | copyhex | 0 | 8192 bytes
 17033 | expected | dateformat | 0 | 8192 bytes
 17366 | expected | fixed | 0 | 8192 bytes
 17041 | expected | jordane | 0 | 8192 bytes
 17173 | expected | missingcol | 0 | 8192 bytes
 17396 | expected | overflow | 0 | 8192 bytes
 17186 | expected | tab_csv | 0 | 8192 bytes
 17213 | expected | temp | 0 | 8192 bytes
 17299 | public | copyhex | 0 | 8192 bytes
 17029 | public | dateformat | 0 | 8192 bytes
 17362 | public | fixed | 0 | 8192 bytes
 17037 | public | jordane | 0 | 8192 bytes
 17164 | public | missingcol | 0 | 8192 bytes
 17387 | public | overflow | 0 | 8192 bytes
 17182 | public | tab_csv | 0 | 8192 bytes
 17210 | public | temp | 0 | 8192 bytes

Listing a table list of COPY partitions:

$ pgcopydb list table-parts --table-name rental --split-at 300kB
16:43:26 73794 INFO Running pgcopydb version 0.8.8.g0838291.dirty from "/Users/dim/dev/PostgreSQL/pgcopydb/src/bin/pgcopydb/pgcopydb"
16:43:26 73794 INFO Listing COPY partitions for table "public"."rental" in "postgres://@:/pagila?"
16:43:26 73794 INFO Table "public"."rental" COPY will be split 5-ways
 Part | Min | Max | Count
-----------+------------+------------+-----------
 1/5 | 1 | 3211 | 3211
 2/5 | 3212 | 6422 | 3211
 3/5 | 6423 | 9633 | 3211
 4/5 | 9634 | 12844 | 3211
 5/5 | 12845 | 16049 | 3205

Listing the indexes:

$ pgcopydb list indexes
14:35:07 13668 INFO Listing indexes in "port=54311 host=localhost dbname=pgloader"
14:35:07 13668 INFO Fetching all indexes in source database
14:35:07 13668 INFO Fetched information for 12 indexes
 OID | Schema | Index Name | conname | Constraint | DDL
---------+------------+----------------------+-----------------+---------------------------+---------------------
 17002 | csv | blocks_ip4r_idx | | | CREATE INDEX blocks_ip4r_idx ON csv.blocks USING gist (iprange)
 17415 | csv | partial_b_idx | | | CREATE INDEX partial_b_idx ON csv.partial USING btree (b)
 17414 | csv | partial_a_key | partial_a_key | UNIQUE (a) | CREATE UNIQUE INDEX partial_a_key ON csv.partial USING btree (a)
 17092 | csv | track_pkey | track_pkey | PRIMARY KEY (trackid) | CREATE UNIQUE INDEX track_pkey ON csv.track USING btree (trackid)
 17329 | err | errors_pkey | errors_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX errors_pkey ON err.errors USING btree (a)
 16394 | public | allcols_pkey | allcols_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX allcols_pkey ON public.allcols USING btree (a)
 17054 | public | csv_escape_mode_pkey | csv_escape_mode_pkey | PRIMARY KEY (id) | CREATE UNIQUE INDEX csv_escape_mode_pkey ON public.csv_escape_mode USING btree (id)
 17199 | public | nullif_pkey | nullif_pkey | PRIMARY KEY (id) | CREATE UNIQUE INDEX nullif_pkey ON public."nullif" USING btree (id)
 17435 | public | serial_pkey | serial_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX serial_pkey ON public.serial USING btree (a)
 17288 | public | track_full_pkey | track_full_pkey | PRIMARY KEY (trackid) | CREATE UNIQUE INDEX track_full_pkey ON public.track_full USING btree (trackid)
 17452 | public | udc_pkey | udc_pkey | PRIMARY KEY (b) | CREATE UNIQUE INDEX udc_pkey ON public.udc USING btree (b)
 17469 | public | xzero_pkey | xzero_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX xzero_pkey ON public.xzero USING btree (a)

Listing the schema in JSON:

$ pgcopydb list schema --split-at 200kB

This gives the following JSON output:

 1{
 2 "setup": {
 3 "snapshot": "00000003-00051AAE-1",
 4 "source_pguri": "postgres:\/\/@:\/pagila?",
 5 "target_pguri": "postgres:\/\/@:\/plop?",
 6 "table-jobs": 4,
 7 "index-jobs": 4,
 8 "split-tables-larger-than": 204800
 9 },
 10 "tables": [
 11 {
 12 "oid": 317934,
 13 "schema": "public",
 14 "name": "rental",
 15 "reltuples": 16044,
 16 "bytes": 1253376,
 17 "bytes-pretty": "1224 kB",
 18 "exclude-data": false,
 19 "restore-list-name": "public rental postgres",
 20 "part-key": "rental_id",
 21 "parts": [
 22 {
 23 "number": 1,
 24 "total": 7,
 25 "min": 1,
 26 "max": 2294,
 27 "count": 2294
 28 },
 29 {
 30 "number": 2,
 31 "total": 7,
 32 "min": 2295,
 33 "max": 4588,
 34 "count": 2294
 35 },
 36 {
 37 "number": 3,
 38 "total": 7,
 39 "min": 4589,
 40 "max": 6882,
 41 "count": 2294
 42 },
 43 {
 44 "number": 4,
 45 "total": 7,
 46 "min": 6883,
 47 "max": 9176,
 48 "count": 2294
 49 },
 50 {
 51 "number": 5,
 52 "total": 7,
 53 "min": 9177,
 54 "max": 11470,
 55 "count": 2294
 56 },
 57 {
 58 "number": 6,
 59 "total": 7,
 60 "min": 11471,
 61 "max": 13764,
 62 "count": 2294
 63 },
 64 {
 65 "number": 7,
 66 "total": 7,
 67 "min": 13765,
 68 "max": 16049,
 69 "count": 2285
 70 }
 71]
 72 },
 73 {
 74 "oid": 317818,
 75 "schema": "public",
 76 "name": "film",
 77 "reltuples": 1000,
 78 "bytes": 483328,
 79 "bytes-pretty": "472 kB",
 80 "exclude-data": false,
 81 "restore-list-name": "public film postgres",
 82 "part-key": "film_id",
 83 "parts": [
 84 {
 85 "number": 1,
 86 "total": 3,
 87 "min": 1,
 88 "max": 334,
 89 "count": 334
 90 },
 91 {
 92 "number": 2,
 93 "total": 3,
 94 "min": 335,
 95 "max": 668,
 96 "count": 334
 97 },
 98 {
 99 "number": 3,
 100 "total": 3,
 101 "min": 669,
 102 "max": 1000,
 103 "count": 332
 104 }
 105]
 106 },
 107 {
 108 "oid": 317920,
 109 "schema": "public",
 110 "name": "payment_p2020_04",
 111 "reltuples": 6754,
 112 "bytes": 434176,
 113 "bytes-pretty": "424 kB",
 114 "exclude-data": false,
 115 "restore-list-name": "public payment_p2020_04 postgres",
 116 "part-key": ""
 117 },
 118 {
 119 "oid": 317916,
 120 "schema": "public",
 121 "name": "payment_p2020_03",
 122 "reltuples": 5644,
 123 "bytes": 368640,
 124 "bytes-pretty": "360 kB",
 125 "exclude-data": false,
 126 "restore-list-name": "public payment_p2020_03 postgres",
 127 "part-key": ""
 128 },
 129 {
 130 "oid": 317830,
 131 "schema": "public",
 132 "name": "film_actor",
 133 "reltuples": 5462,
 134 "bytes": 270336,
 135 "bytes-pretty": "264 kB",
 136 "exclude-data": false,
 137 "restore-list-name": "public film_actor postgres",
 138 "part-key": ""
 139 },
 140 {
 141 "oid": 317885,
 142 "schema": "public",
 143 "name": "inventory",
 144 "reltuples": 4581,
 145 "bytes": 270336,
 146 "bytes-pretty": "264 kB",
 147 "exclude-data": false,
 148 "restore-list-name": "public inventory postgres",
 149 "part-key": "inventory_id",
 150 "parts": [
 151 {
 152 "number": 1,
 153 "total": 2,
 154 "min": 1,
 155 "max": 2291,
 156 "count": 2291
 157 },
 158 {
 159 "number": 2,
 160 "total": 2,
 161 "min": 2292,
 162 "max": 4581,
 163 "count": 2290
 164 }
 165]
 166 },
 167 {
 168 "oid": 317912,
 169 "schema": "public",
 170 "name": "payment_p2020_02",
 171 "reltuples": 2312,
 172 "bytes": 163840,
 173 "bytes-pretty": "160 kB",
 174 "exclude-data": false,
 175 "restore-list-name": "public payment_p2020_02 postgres",
 176 "part-key": ""
 177 },
 178 {
 179 "oid": 317784,
 180 "schema": "public",
 181 "name": "customer",
 182 "reltuples": 599,
 183 "bytes": 106496,
 184 "bytes-pretty": "104 kB",
 185 "exclude-data": false,
 186 "restore-list-name": "public customer postgres",
 187 "part-key": "customer_id"
 188 },
 189 {
 190 "oid": 317845,
 191 "schema": "public",
 192 "name": "address",
 193 "reltuples": 603,
 194 "bytes": 98304,
 195 "bytes-pretty": "96 kB",
 196 "exclude-data": false,
 197 "restore-list-name": "public address postgres",
 198 "part-key": "address_id"
 199 },
 200 {
 201 "oid": 317908,
 202 "schema": "public",
 203 "name": "payment_p2020_01",
 204 "reltuples": 1157,
 205 "bytes": 98304,
 206 "bytes-pretty": "96 kB",
 207 "exclude-data": false,
 208 "restore-list-name": "public payment_p2020_01 postgres",
 209 "part-key": ""
 210 },
 211 {
 212 "oid": 317855,
 213 "schema": "public",
 214 "name": "city",
 215 "reltuples": 600,
 216 "bytes": 73728,
 217 "bytes-pretty": "72 kB",
 218 "exclude-data": false,
 219 "restore-list-name": "public city postgres",
 220 "part-key": "city_id"
 221 },
 222 {
 223 "oid": 317834,
 224 "schema": "public",
 225 "name": "film_category",
 226 "reltuples": 1000,
 227 "bytes": 73728,
 228 "bytes-pretty": "72 kB",
 229 "exclude-data": false,
 230 "restore-list-name": "public film_category postgres",
 231 "part-key": ""
 232 },
 233 {
 234 "oid": 317798,
 235 "schema": "public",
 236 "name": "actor",
 237 "reltuples": 200,
 238 "bytes": 49152,
 239 "bytes-pretty": "48 kB",
 240 "exclude-data": false,
 241 "restore-list-name": "public actor postgres",
 242 "part-key": "actor_id"
 243 },
 244 {
 245 "oid": 317924,
 246 "schema": "public",
 247 "name": "payment_p2020_05",
 248 "reltuples": 182,
 249 "bytes": 40960,
 250 "bytes-pretty": "40 kB",
 251 "exclude-data": false,
 252 "restore-list-name": "public payment_p2020_05 postgres",
 253 "part-key": ""
 254 },
 255 {
 256 "oid": 317808,
 257 "schema": "public",
 258 "name": "category",
 259 "reltuples": 0,
 260 "bytes": 16384,
 261 "bytes-pretty": "16 kB",
 262 "exclude-data": false,
 263 "restore-list-name": "public category postgres",
 264 "part-key": "category_id"
 265 },
 266 {
 267 "oid": 317865,
 268 "schema": "public",
 269 "name": "country",
 270 "reltuples": 109,
 271 "bytes": 16384,
 272 "bytes-pretty": "16 kB",
 273 "exclude-data": false,
 274 "restore-list-name": "public country postgres",
 275 "part-key": "country_id"
 276 },
 277 {
 278 "oid": 317946,
 279 "schema": "public",
 280 "name": "staff",
 281 "reltuples": 0,
 282 "bytes": 16384,
 283 "bytes-pretty": "16 kB",
 284 "exclude-data": false,
 285 "restore-list-name": "public staff postgres",
 286 "part-key": "staff_id"
 287 },
 288 {
 289 "oid": 378280,
 290 "schema": "pgcopydb",
 291 "name": "sentinel",
 292 "reltuples": 1,
 293 "bytes": 8192,
 294 "bytes-pretty": "8192 bytes",
 295 "exclude-data": false,
 296 "restore-list-name": "pgcopydb sentinel dim",
 297 "part-key": ""
 298 },
 299 {
 300 "oid": 317892,
 301 "schema": "public",
 302 "name": "language",
 303 "reltuples": 0,
 304 "bytes": 8192,
 305 "bytes-pretty": "8192 bytes",
 306 "exclude-data": false,
 307 "restore-list-name": "public language postgres",
 308 "part-key": "language_id"
 309 },
 310 {
 311 "oid": 317928,
 312 "schema": "public",
 313 "name": "payment_p2020_06",
 314 "reltuples": 0,
 315 "bytes": 8192,
 316 "bytes-pretty": "8192 bytes",
 317 "exclude-data": false,
 318 "restore-list-name": "public payment_p2020_06 postgres",
 319 "part-key": ""
 320 },
 321 {
 322 "oid": 317957,
 323 "schema": "public",
 324 "name": "store",
 325 "reltuples": 0,
 326 "bytes": 8192,
 327 "bytes-pretty": "8192 bytes",
 328 "exclude-data": false,
 329 "restore-list-name": "public store postgres",
 330 "part-key": "store_id"
 331 }
 332],
 333 "indexes": [
 334 {
 335 "oid": 378283,
 336 "schema": "pgcopydb",
 337 "name": "sentinel_expr_idx",
 338 "isPrimary": false,
 339 "isUnique": true,
 340 "columns": "",
 341 "sql": "CREATE UNIQUE INDEX sentinel_expr_idx ON pgcopydb.sentinel USING btree ((1))",
 342 "restore-list-name": "pgcopydb sentinel_expr_idx dim",
 343 "table": {
 344 "oid": 378280,
 345 "schema": "pgcopydb",
 346 "name": "sentinel"
 347 }
 348 },
 349 {
 350 "oid": 318001,
 351 "schema": "public",
 352 "name": "idx_actor_last_name",
 353 "isPrimary": false,
 354 "isUnique": false,
 355 "columns": "last_name",
 356 "sql": "CREATE INDEX idx_actor_last_name ON public.actor USING btree (last_name)",
 357 "restore-list-name": "public idx_actor_last_name postgres",
 358 "table": {
 359 "oid": 317798,
 360 "schema": "public",
 361 "name": "actor"
 362 }
 363 },
 364 {
 365 "oid": 317972,
 366 "schema": "public",
 367 "name": "actor_pkey",
 368 "isPrimary": true,
 369 "isUnique": true,
 370 "columns": "actor_id",
 371 "sql": "CREATE UNIQUE INDEX actor_pkey ON public.actor USING btree (actor_id)",
 372 "restore-list-name": "",
 373 "table": {
 374 "oid": 317798,
 375 "schema": "public",
 376 "name": "actor"
 377 },
 378 "constraint": {
 379 "oid": 317973,
 380 "name": "actor_pkey",
 381 "sql": "PRIMARY KEY (actor_id)"
 382 }
 383 },
 384 {
 385 "oid": 317974,
 386 "schema": "public",
 387 "name": "address_pkey",
 388 "isPrimary": true,
 389 "isUnique": true,
 390 "columns": "address_id",
 391 "sql": "CREATE UNIQUE INDEX address_pkey ON public.address USING btree (address_id)",
 392 "restore-list-name": "",
 393 "table": {
 394 "oid": 317845,
 395 "schema": "public",
 396 "name": "address"
 397 },
 398 "constraint": {
 399 "oid": 317975,
 400 "name": "address_pkey",
 401 "sql": "PRIMARY KEY (address_id)"
 402 }
 403 },
 404 {
 405 "oid": 318003,
 406 "schema": "public",
 407 "name": "idx_fk_city_id",
 408 "isPrimary": false,
 409 "isUnique": false,
 410 "columns": "city_id",
 411 "sql": "CREATE INDEX idx_fk_city_id ON public.address USING btree (city_id)",
 412 "restore-list-name": "public idx_fk_city_id postgres",
 413 "table": {
 414 "oid": 317845,
 415 "schema": "public",
 416 "name": "address"
 417 }
 418 },
 419 {
 420 "oid": 317976,
 421 "schema": "public",
 422 "name": "category_pkey",
 423 "isPrimary": true,
 424 "isUnique": true,
 425 "columns": "category_id",
 426 "sql": "CREATE UNIQUE INDEX category_pkey ON public.category USING btree (category_id)",
 427 "restore-list-name": "",
 428 "table": {
 429 "oid": 317808,
 430 "schema": "public",
 431 "name": "category"
 432 },
 433 "constraint": {
 434 "oid": 317977,
 435 "name": "category_pkey",
 436 "sql": "PRIMARY KEY (category_id)"
 437 }
 438 },
 439 {
 440 "oid": 317978,
 441 "schema": "public",
 442 "name": "city_pkey",
 443 "isPrimary": true,
 444 "isUnique": true,
 445 "columns": "city_id",
 446 "sql": "CREATE UNIQUE INDEX city_pkey ON public.city USING btree (city_id)",
 447 "restore-list-name": "",
 448 "table": {
 449 "oid": 317855,
 450 "schema": "public",
 451 "name": "city"
 452 },
 453 "constraint": {
 454 "oid": 317979,
 455 "name": "city_pkey",
 456 "sql": "PRIMARY KEY (city_id)"
 457 }
 458 },
 459 {
 460 "oid": 318004,
 461 "schema": "public",
 462 "name": "idx_fk_country_id",
 463 "isPrimary": false,
 464 "isUnique": false,
 465 "columns": "country_id",
 466 "sql": "CREATE INDEX idx_fk_country_id ON public.city USING btree (country_id)",
 467 "restore-list-name": "public idx_fk_country_id postgres",
 468 "table": {
 469 "oid": 317855,
 470 "schema": "public",
 471 "name": "city"
 472 }
 473 },
 474 {
 475 "oid": 317980,
 476 "schema": "public",
 477 "name": "country_pkey",
 478 "isPrimary": true,
 479 "isUnique": true,
 480 "columns": "country_id",
 481 "sql": "CREATE UNIQUE INDEX country_pkey ON public.country USING btree (country_id)",
 482 "restore-list-name": "",
 483 "table": {
 484 "oid": 317865,
 485 "schema": "public",
 486 "name": "country"
 487 },
 488 "constraint": {
 489 "oid": 317981,
 490 "name": "country_pkey",
 491 "sql": "PRIMARY KEY (country_id)"
 492 }
 493 },
 494 {
 495 "oid": 318024,
 496 "schema": "public",
 497 "name": "idx_last_name",
 498 "isPrimary": false,
 499 "isUnique": false,
 500 "columns": "last_name",
 501 "sql": "CREATE INDEX idx_last_name ON public.customer USING btree (last_name)",
 502 "restore-list-name": "public idx_last_name postgres",
 503 "table": {
 504 "oid": 317784,
 505 "schema": "public",
 506 "name": "customer"
 507 }
 508 },
 509 {
 510 "oid": 318002,
 511 "schema": "public",
 512 "name": "idx_fk_address_id",
 513 "isPrimary": false,
 514 "isUnique": false,
 515 "columns": "address_id",
 516 "sql": "CREATE INDEX idx_fk_address_id ON public.customer USING btree (address_id)",
 517 "restore-list-name": "public idx_fk_address_id postgres",
 518 "table": {
 519 "oid": 317784,
 520 "schema": "public",
 521 "name": "customer"
 522 }
 523 },
 524 {
 525 "oid": 317982,
 526 "schema": "public",
 527 "name": "customer_pkey",
 528 "isPrimary": true,
 529 "isUnique": true,
 530 "columns": "customer_id",
 531 "sql": "CREATE UNIQUE INDEX customer_pkey ON public.customer USING btree (customer_id)",
 532 "restore-list-name": "",
 533 "table": {
 534 "oid": 317784,
 535 "schema": "public",
 536 "name": "customer"
 537 },
 538 "constraint": {
 539 "oid": 317983,
 540 "name": "customer_pkey",
 541 "sql": "PRIMARY KEY (customer_id)"
 542 }
 543 },
 544 {
 545 "oid": 318023,
 546 "schema": "public",
 547 "name": "idx_fk_store_id",
 548 "isPrimary": false,
 549 "isUnique": false,
 550 "columns": "store_id",
 551 "sql": "CREATE INDEX idx_fk_store_id ON public.customer USING btree (store_id)",
 552 "restore-list-name": "public idx_fk_store_id postgres",
 553 "table": {
 554 "oid": 317784,
 555 "schema": "public",
 556 "name": "customer"
 557 }
 558 },
 559 {
 560 "oid": 318009,
 561 "schema": "public",
 562 "name": "idx_fk_original_language_id",
 563 "isPrimary": false,
 564 "isUnique": false,
 565 "columns": "original_language_id",
 566 "sql": "CREATE INDEX idx_fk_original_language_id ON public.film USING btree (original_language_id)",
 567 "restore-list-name": "public idx_fk_original_language_id postgres",
 568 "table": {
 569 "oid": 317818,
 570 "schema": "public",
 571 "name": "film"
 572 }
 573 },
 574 {
 575 "oid": 318026,
 576 "schema": "public",
 577 "name": "idx_title",
 578 "isPrimary": false,
 579 "isUnique": false,
 580 "columns": "title",
 581 "sql": "CREATE INDEX idx_title ON public.film USING btree (title)",
 582 "restore-list-name": "public idx_title postgres",
 583 "table": {
 584 "oid": 317818,
 585 "schema": "public",
 586 "name": "film"
 587 }
 588 },
 589 {
 590 "oid": 318000,
 591 "schema": "public",
 592 "name": "film_fulltext_idx",
 593 "isPrimary": false,
 594 "isUnique": false,
 595 "columns": "fulltext",
 596 "sql": "CREATE INDEX film_fulltext_idx ON public.film USING gist (fulltext)",
 597 "restore-list-name": "public film_fulltext_idx postgres",
 598 "table": {
 599 "oid": 317818,
 600 "schema": "public",
 601 "name": "film"
 602 }
 603 },
 604 {
 605 "oid": 317988,
 606 "schema": "public",
 607 "name": "film_pkey",
 608 "isPrimary": true,
 609 "isUnique": true,
 610 "columns": "film_id",
 611 "sql": "CREATE UNIQUE INDEX film_pkey ON public.film USING btree (film_id)",
 612 "restore-list-name": "",
 613 "table": {
 614 "oid": 317818,
 615 "schema": "public",
 616 "name": "film"
 617 },
 618 "constraint": {
 619 "oid": 317989,
 620 "name": "film_pkey",
 621 "sql": "PRIMARY KEY (film_id)"
 622 }
 623 },
 624 {
 625 "oid": 318008,
 626 "schema": "public",
 627 "name": "idx_fk_language_id",
 628 "isPrimary": false,
 629 "isUnique": false,
 630 "columns": "language_id",
 631 "sql": "CREATE INDEX idx_fk_language_id ON public.film USING btree (language_id)",
 632 "restore-list-name": "public idx_fk_language_id postgres",
 633 "table": {
 634 "oid": 317818,
 635 "schema": "public",
 636 "name": "film"
 637 }
 638 },
 639 {
 640 "oid": 317984,
 641 "schema": "public",
 642 "name": "film_actor_pkey",
 643 "isPrimary": true,
 644 "isUnique": true,
 645 "columns": "actor_id,film_id",
 646 "sql": "CREATE UNIQUE INDEX film_actor_pkey ON public.film_actor USING btree (actor_id, film_id)",
 647 "restore-list-name": "",
 648 "table": {
 649 "oid": 317830,
 650 "schema": "public",
 651 "name": "film_actor"
 652 },
 653 "constraint": {
 654 "oid": 317985,
 655 "name": "film_actor_pkey",
 656 "sql": "PRIMARY KEY (actor_id, film_id)"
 657 }
 658 },
 659 {
 660 "oid": 318006,
 661 "schema": "public",
 662 "name": "idx_fk_film_id",
 663 "isPrimary": false,
 664 "isUnique": false,
 665 "columns": "film_id",
 666 "sql": "CREATE INDEX idx_fk_film_id ON public.film_actor USING btree (film_id)",
 667 "restore-list-name": "public idx_fk_film_id postgres",
 668 "table": {
 669 "oid": 317830,
 670 "schema": "public",
 671 "name": "film_actor"
 672 }
 673 },
 674 {
 675 "oid": 317986,
 676 "schema": "public",
 677 "name": "film_category_pkey",
 678 "isPrimary": true,
 679 "isUnique": true,
 680 "columns": "film_id,category_id",
 681 "sql": "CREATE UNIQUE INDEX film_category_pkey ON public.film_category USING btree (film_id, category_id)",
 682 "restore-list-name": "",
 683 "table": {
 684 "oid": 317834,
 685 "schema": "public",
 686 "name": "film_category"
 687 },
 688 "constraint": {
 689 "oid": 317987,
 690 "name": "film_category_pkey",
 691 "sql": "PRIMARY KEY (film_id, category_id)"
 692 }
 693 },
 694 {
 695 "oid": 318025,
 696 "schema": "public",
 697 "name": "idx_store_id_film_id",
 698 "isPrimary": false,
 699 "isUnique": false,
 700 "columns": "film_id,store_id",
 701 "sql": "CREATE INDEX idx_store_id_film_id ON public.inventory USING btree (store_id, film_id)",
 702 "restore-list-name": "public idx_store_id_film_id postgres",
 703 "table": {
 704 "oid": 317885,
 705 "schema": "public",
 706 "name": "inventory"
 707 }
 708 },
 709 {
 710 "oid": 317990,
 711 "schema": "public",
 712 "name": "inventory_pkey",
 713 "isPrimary": true,
 714 "isUnique": true,
 715 "columns": "inventory_id",
 716 "sql": "CREATE UNIQUE INDEX inventory_pkey ON public.inventory USING btree (inventory_id)",
 717 "restore-list-name": "",
 718 "table": {
 719 "oid": 317885,
 720 "schema": "public",
 721 "name": "inventory"
 722 },
 723 "constraint": {
 724 "oid": 317991,
 725 "name": "inventory_pkey",
 726 "sql": "PRIMARY KEY (inventory_id)"
 727 }
 728 },
 729 {
 730 "oid": 317992,
 731 "schema": "public",
 732 "name": "language_pkey",
 733 "isPrimary": true,
 734 "isUnique": true,
 735 "columns": "language_id",
 736 "sql": "CREATE UNIQUE INDEX language_pkey ON public.language USING btree (language_id)",
 737 "restore-list-name": "",
 738 "table": {
 739 "oid": 317892,
 740 "schema": "public",
 741 "name": "language"
 742 },
 743 "constraint": {
 744 "oid": 317993,
 745 "name": "language_pkey",
 746 "sql": "PRIMARY KEY (language_id)"
 747 }
 748 },
 749 {
 750 "oid": 318010,
 751 "schema": "public",
 752 "name": "idx_fk_payment_p2020_01_customer_id",
 753 "isPrimary": false,
 754 "isUnique": false,
 755 "columns": "customer_id",
 756 "sql": "CREATE INDEX idx_fk_payment_p2020_01_customer_id ON public.payment_p2020_01 USING btree (customer_id)",
 757 "restore-list-name": "public idx_fk_payment_p2020_01_customer_id postgres",
 758 "table": {
 759 "oid": 317908,
 760 "schema": "public",
 761 "name": "payment_p2020_01"
 762 }
 763 },
 764 {
 765 "oid": 318029,
 766 "schema": "public",
 767 "name": "payment_p2020_01_customer_id_idx",
 768 "isPrimary": false,
 769 "isUnique": false,
 770 "columns": "customer_id",
 771 "sql": "CREATE INDEX payment_p2020_01_customer_id_idx ON public.payment_p2020_01 USING btree (customer_id)",
 772 "restore-list-name": "public payment_p2020_01_customer_id_idx postgres",
 773 "table": {
 774 "oid": 317908,
 775 "schema": "public",
 776 "name": "payment_p2020_01"
 777 }
 778 },
 779 {
 780 "oid": 318012,
 781 "schema": "public",
 782 "name": "idx_fk_payment_p2020_01_staff_id",
 783 "isPrimary": false,
 784 "isUnique": false,
 785 "columns": "staff_id",
 786 "sql": "CREATE INDEX idx_fk_payment_p2020_01_staff_id ON public.payment_p2020_01 USING btree (staff_id)",
 787 "restore-list-name": "public idx_fk_payment_p2020_01_staff_id postgres",
 788 "table": {
 789 "oid": 317908,
 790 "schema": "public",
 791 "name": "payment_p2020_01"
 792 }
 793 },
 794 {
 795 "oid": 318013,
 796 "schema": "public",
 797 "name": "idx_fk_payment_p2020_02_customer_id",
 798 "isPrimary": false,
 799 "isUnique": false,
 800 "columns": "customer_id",
 801 "sql": "CREATE INDEX idx_fk_payment_p2020_02_customer_id ON public.payment_p2020_02 USING btree (customer_id)",
 802 "restore-list-name": "public idx_fk_payment_p2020_02_customer_id postgres",
 803 "table": {
 804 "oid": 317912,
 805 "schema": "public",
 806 "name": "payment_p2020_02"
 807 }
 808 },
 809 {
 810 "oid": 318014,
 811 "schema": "public",
 812 "name": "idx_fk_payment_p2020_02_staff_id",
 813 "isPrimary": false,
 814 "isUnique": false,
 815 "columns": "staff_id",
 816 "sql": "CREATE INDEX idx_fk_payment_p2020_02_staff_id ON public.payment_p2020_02 USING btree (staff_id)",
 817 "restore-list-name": "public idx_fk_payment_p2020_02_staff_id postgres",
 818 "table": {
 819 "oid": 317912,
 820 "schema": "public",
 821 "name": "payment_p2020_02"
 822 }
 823 },
 824 {
 825 "oid": 318030,
 826 "schema": "public",
 827 "name": "payment_p2020_02_customer_id_idx",
 828 "isPrimary": false,
 829 "isUnique": false,
 830 "columns": "customer_id",
 831 "sql": "CREATE INDEX payment_p2020_02_customer_id_idx ON public.payment_p2020_02 USING btree (customer_id)",
 832 "restore-list-name": "public payment_p2020_02_customer_id_idx postgres",
 833 "table": {
 834 "oid": 317912,
 835 "schema": "public",
 836 "name": "payment_p2020_02"
 837 }
 838 },
 839 {
 840 "oid": 318016,
 841 "schema": "public",
 842 "name": "idx_fk_payment_p2020_03_staff_id",
 843 "isPrimary": false,
 844 "isUnique": false,
 845 "columns": "staff_id",
 846 "sql": "CREATE INDEX idx_fk_payment_p2020_03_staff_id ON public.payment_p2020_03 USING btree (staff_id)",
 847 "restore-list-name": "public idx_fk_payment_p2020_03_staff_id postgres",
 848 "table": {
 849 "oid": 317916,
 850 "schema": "public",
 851 "name": "payment_p2020_03"
 852 }
 853 },
 854 {
 855 "oid": 318031,
 856 "schema": "public",
 857 "name": "payment_p2020_03_customer_id_idx",
 858 "isPrimary": false,
 859 "isUnique": false,
 860 "columns": "customer_id",
 861 "sql": "CREATE INDEX payment_p2020_03_customer_id_idx ON public.payment_p2020_03 USING btree (customer_id)",
 862 "restore-list-name": "public payment_p2020_03_customer_id_idx postgres",
 863 "table": {
 864 "oid": 317916,
 865 "schema": "public",
 866 "name": "payment_p2020_03"
 867 }
 868 },
 869 {
 870 "oid": 318015,
 871 "schema": "public",
 872 "name": "idx_fk_payment_p2020_03_customer_id",
 873 "isPrimary": false,
 874 "isUnique": false,
 875 "columns": "customer_id",
 876 "sql": "CREATE INDEX idx_fk_payment_p2020_03_customer_id ON public.payment_p2020_03 USING btree (customer_id)",
 877 "restore-list-name": "public idx_fk_payment_p2020_03_customer_id postgres",
 878 "table": {
 879 "oid": 317916,
 880 "schema": "public",
 881 "name": "payment_p2020_03"
 882 }
 883 },
 884 {
 885 "oid": 318032,
 886 "schema": "public",
 887 "name": "payment_p2020_04_customer_id_idx",
 888 "isPrimary": false,
 889 "isUnique": false,
 890 "columns": "customer_id",
 891 "sql": "CREATE INDEX payment_p2020_04_customer_id_idx ON public.payment_p2020_04 USING btree (customer_id)",
 892 "restore-list-name": "public payment_p2020_04_customer_id_idx postgres",
 893 "table": {
 894 "oid": 317920,
 895 "schema": "public",
 896 "name": "payment_p2020_04"
 897 }
 898 },
 899 {
 900 "oid": 318018,
 901 "schema": "public",
 902 "name": "idx_fk_payment_p2020_04_staff_id",
 903 "isPrimary": false,
 904 "isUnique": false,
 905 "columns": "staff_id",
 906 "sql": "CREATE INDEX idx_fk_payment_p2020_04_staff_id ON public.payment_p2020_04 USING btree (staff_id)",
 907 "restore-list-name": "public idx_fk_payment_p2020_04_staff_id postgres",
 908 "table": {
 909 "oid": 317920,
 910 "schema": "public",
 911 "name": "payment_p2020_04"
 912 }
 913 },
 914 {
 915 "oid": 318017,
 916 "schema": "public",
 917 "name": "idx_fk_payment_p2020_04_customer_id",
 918 "isPrimary": false,
 919 "isUnique": false,
 920 "columns": "customer_id",
 921 "sql": "CREATE INDEX idx_fk_payment_p2020_04_customer_id ON public.payment_p2020_04 USING btree (customer_id)",
 922 "restore-list-name": "public idx_fk_payment_p2020_04_customer_id postgres",
 923 "table": {
 924 "oid": 317920,
 925 "schema": "public",
 926 "name": "payment_p2020_04"
 927 }
 928 },
 929 {
 930 "oid": 318019,
 931 "schema": "public",
 932 "name": "idx_fk_payment_p2020_05_customer_id",
 933 "isPrimary": false,
 934 "isUnique": false,
 935 "columns": "customer_id",
 936 "sql": "CREATE INDEX idx_fk_payment_p2020_05_customer_id ON public.payment_p2020_05 USING btree (customer_id)",
 937 "restore-list-name": "public idx_fk_payment_p2020_05_customer_id postgres",
 938 "table": {
 939 "oid": 317924,
 940 "schema": "public",
 941 "name": "payment_p2020_05"
 942 }
 943 },
 944 {
 945 "oid": 318020,
 946 "schema": "public",
 947 "name": "idx_fk_payment_p2020_05_staff_id",
 948 "isPrimary": false,
 949 "isUnique": false,
 950 "columns": "staff_id",
 951 "sql": "CREATE INDEX idx_fk_payment_p2020_05_staff_id ON public.payment_p2020_05 USING btree (staff_id)",
 952 "restore-list-name": "public idx_fk_payment_p2020_05_staff_id postgres",
 953 "table": {
 954 "oid": 317924,
 955 "schema": "public",
 956 "name": "payment_p2020_05"
 957 }
 958 },
 959 {
 960 "oid": 318033,
 961 "schema": "public",
 962 "name": "payment_p2020_05_customer_id_idx",
 963 "isPrimary": false,
 964 "isUnique": false,
 965 "columns": "customer_id",
 966 "sql": "CREATE INDEX payment_p2020_05_customer_id_idx ON public.payment_p2020_05 USING btree (customer_id)",
 967 "restore-list-name": "public payment_p2020_05_customer_id_idx postgres",
 968 "table": {
 969 "oid": 317924,
 970 "schema": "public",
 971 "name": "payment_p2020_05"
 972 }
 973 },
 974 {
 975 "oid": 318022,
 976 "schema": "public",
 977 "name": "idx_fk_payment_p2020_06_staff_id",
 978 "isPrimary": false,
 979 "isUnique": false,
 980 "columns": "staff_id",
 981 "sql": "CREATE INDEX idx_fk_payment_p2020_06_staff_id ON public.payment_p2020_06 USING btree (staff_id)",
 982 "restore-list-name": "public idx_fk_payment_p2020_06_staff_id postgres",
 983 "table": {
 984 "oid": 317928,
 985 "schema": "public",
 986 "name": "payment_p2020_06"
 987 }
 988 },
 989 {
 990 "oid": 318034,
 991 "schema": "public",
 992 "name": "payment_p2020_06_customer_id_idx",
 993 "isPrimary": false,
 994 "isUnique": false,
 995 "columns": "customer_id",
 996 "sql": "CREATE INDEX payment_p2020_06_customer_id_idx ON public.payment_p2020_06 USING btree (customer_id)",
 997 "restore-list-name": "public payment_p2020_06_customer_id_idx postgres",
 998 "table": {
 999 "oid": 317928,
1000 "schema": "public",
1001 "name": "payment_p2020_06"
1002 }
1003 },
1004 {
1005 "oid": 318021,
1006 "schema": "public",
1007 "name": "idx_fk_payment_p2020_06_customer_id",
1008 "isPrimary": false,
1009 "isUnique": false,
1010 "columns": "customer_id",
1011 "sql": "CREATE INDEX idx_fk_payment_p2020_06_customer_id ON public.payment_p2020_06 USING btree (customer_id)",
1012 "restore-list-name": "public idx_fk_payment_p2020_06_customer_id postgres",
1013 "table": {
1014 "oid": 317928,
1015 "schema": "public",
1016 "name": "payment_p2020_06"
1017 }
1018 },
1019 {
1020 "oid": 318028,
1021 "schema": "public",
1022 "name": "idx_unq_rental_rental_date_inventory_id_customer_id",
1023 "isPrimary": false,
1024 "isUnique": true,
1025 "columns": "rental_date,inventory_id,customer_id",
1026 "sql": "CREATE UNIQUE INDEX idx_unq_rental_rental_date_inventory_id_customer_id ON public.rental USING btree (rental_date, inventory_id, customer_id)",
1027 "restore-list-name": "public idx_unq_rental_rental_date_inventory_id_customer_id postgres",
1028 "table": {
1029 "oid": 317934,
1030 "schema": "public",
1031 "name": "rental"
1032 }
1033 },
1034 {
1035 "oid": 317994,
1036 "schema": "public",
1037 "name": "rental_pkey",
1038 "isPrimary": true,
1039 "isUnique": true,
1040 "columns": "rental_id",
1041 "sql": "CREATE UNIQUE INDEX rental_pkey ON public.rental USING btree (rental_id)",
1042 "restore-list-name": "",
1043 "table": {
1044 "oid": 317934,
1045 "schema": "public",
1046 "name": "rental"
1047 },
1048 "constraint": {
1049 "oid": 317995,
1050 "name": "rental_pkey",
1051 "sql": "PRIMARY KEY (rental_id)"
1052 }
1053 },
1054 {
1055 "oid": 318007,
1056 "schema": "public",
1057 "name": "idx_fk_inventory_id",
1058 "isPrimary": false,
1059 "isUnique": false,
1060 "columns": "inventory_id",
1061 "sql": "CREATE INDEX idx_fk_inventory_id ON public.rental USING btree (inventory_id)",
1062 "restore-list-name": "public idx_fk_inventory_id postgres",
1063 "table": {
1064 "oid": 317934,
1065 "schema": "public",
1066 "name": "rental"
1067 }
1068 },
1069 {
1070 "oid": 317996,
1071 "schema": "public",
1072 "name": "staff_pkey",
1073 "isPrimary": true,
1074 "isUnique": true,
1075 "columns": "staff_id",
1076 "sql": "CREATE UNIQUE INDEX staff_pkey ON public.staff USING btree (staff_id)",
1077 "restore-list-name": "",
1078 "table": {
1079 "oid": 317946,
1080 "schema": "public",
1081 "name": "staff"
1082 },
1083 "constraint": {
1084 "oid": 317997,
1085 "name": "staff_pkey",
1086 "sql": "PRIMARY KEY (staff_id)"
1087 }
1088 },
1089 {
1090 "oid": 318027,
1091 "schema": "public",
1092 "name": "idx_unq_manager_staff_id",
1093 "isPrimary": false,
1094 "isUnique": true,
1095 "columns": "manager_staff_id",
1096 "sql": "CREATE UNIQUE INDEX idx_unq_manager_staff_id ON public.store USING btree (manager_staff_id)",
1097 "restore-list-name": "public idx_unq_manager_staff_id postgres",
1098 "table": {
1099 "oid": 317957,
1100 "schema": "public",
1101 "name": "store"
1102 }
1103 },
1104 {
1105 "oid": 317998,
1106 "schema": "public",
1107 "name": "store_pkey",
1108 "isPrimary": true,
1109 "isUnique": true,
1110 "columns": "store_id",
1111 "sql": "CREATE UNIQUE INDEX store_pkey ON public.store USING btree (store_id)",
1112 "restore-list-name": "",
1113 "table": {
1114 "oid": 317957,
1115 "schema": "public",
1116 "name": "store"
1117 },
1118 "constraint": {
1119 "oid": 317999,
1120 "name": "store_pkey",
1121 "sql": "PRIMARY KEY (store_id)"
1122 }
1123 }
1124],
1125 "sequences": [
1126 {
1127 "oid": 317796,
1128 "schema": "public",
1129 "name": "actor_actor_id_seq",
1130 "last-value": 200,
1131 "is-called": true,
1132 "restore-list-name": "public actor_actor_id_seq postgres"
1133 },
1134 {
1135 "oid": 317843,
1136 "schema": "public",
1137 "name": "address_address_id_seq",
1138 "last-value": 605,
1139 "is-called": true,
1140 "restore-list-name": "public address_address_id_seq postgres"
1141 },
1142 {
1143 "oid": 317806,
1144 "schema": "public",
1145 "name": "category_category_id_seq",
1146 "last-value": 16,
1147 "is-called": true,
1148 "restore-list-name": "public category_category_id_seq postgres"
1149 },
1150 {
1151 "oid": 317853,
1152 "schema": "public",
1153 "name": "city_city_id_seq",
1154 "last-value": 600,
1155 "is-called": true,
1156 "restore-list-name": "public city_city_id_seq postgres"
1157 },
1158 {
1159 "oid": 317863,
1160 "schema": "public",
1161 "name": "country_country_id_seq",
1162 "last-value": 109,
1163 "is-called": true,
1164 "restore-list-name": "public country_country_id_seq postgres"
1165 },
1166 {
1167 "oid": 317782,
1168 "schema": "public",
1169 "name": "customer_customer_id_seq",
1170 "last-value": 599,
1171 "is-called": true,
1172 "restore-list-name": "public customer_customer_id_seq postgres"
1173 },
1174 {
1175 "oid": 317816,
1176 "schema": "public",
1177 "name": "film_film_id_seq",
1178 "last-value": 1000,
1179 "is-called": true,
1180 "restore-list-name": "public film_film_id_seq postgres"
1181 },
1182 {
1183 "oid": 317883,
1184 "schema": "public",
1185 "name": "inventory_inventory_id_seq",
1186 "last-value": 4581,
1187 "is-called": true,
1188 "restore-list-name": "public inventory_inventory_id_seq postgres"
1189 },
1190 {
1191 "oid": 317890,
1192 "schema": "public",
1193 "name": "language_language_id_seq",
1194 "last-value": 6,
1195 "is-called": true,
1196 "restore-list-name": "public language_language_id_seq postgres"
1197 },
1198 {
1199 "oid": 317902,
1200 "schema": "public",
1201 "name": "payment_payment_id_seq",
1202 "last-value": 32099,
1203 "is-called": true,
1204 "restore-list-name": "public payment_payment_id_seq postgres"
1205 },
1206 {
1207 "oid": 317932,
1208 "schema": "public",
1209 "name": "rental_rental_id_seq",
1210 "last-value": 16050,
1211 "is-called": true,
1212 "restore-list-name": "public rental_rental_id_seq postgres"
1213 },
1214 {
1215 "oid": 317944,
1216 "schema": "public",
1217 "name": "staff_staff_id_seq",
1218 "last-value": 2,
1219 "is-called": true,
1220 "restore-list-name": "public staff_staff_id_seq postgres"
1221 },
1222 {
1223 "oid": 317955,
1224 "schema": "public",
1225 "name": "store_store_id_seq",
1226 "last-value": 2,
1227 "is-called": true,
1228 "restore-list-name": "public store_store_id_seq postgres"
1229 }
1230]
1231}

Listing current progress (log lines removed):

$ pgcopydb list progress 2>/dev/null
 | Total Count | In Progress | Done
-------------+--------------+--------------+-------------
 Tables | 21 | 4 | 7
 Indexes | 48 | 14 | 7

Listing current progress, in JSON:

$ pgcopydb list progress --json 2>/dev/null
{
 "table-jobs": 4,
 "index-jobs": 4,
 "tables": {
 "total": 21,
 "done": 9,
 "in-progress": [
 {
 "oid": 317908,
 "schema": "public",
 "name": "payment_p2020_01",
 "reltuples": 1157,
 "bytes": 98304,
 "bytes-pretty": "96 kB",
 "exclude-data": false,
 "restore-list-name": "public payment_p2020_01 postgres",
 "part-key": "",
 "process": {
 "pid": 75159,
 "start-time-epoch": 1662476249,
 "start-time-string": "2022-09-06 16:57:29 CEST",
 "command": "COPY \"public\".\"payment_p2020_01\""
 }
 },
 {
 "oid": 317855,
 "schema": "public",
 "name": "city",
 "reltuples": 600,
 "bytes": 73728,
 "bytes-pretty": "72 kB",
 "exclude-data": false,
 "restore-list-name": "public city postgres",
 "part-key": "city_id",
 "process": {
 "pid": 75157,
 "start-time-epoch": 1662476249,
 "start-time-string": "2022-09-06 16:57:29 CEST",
 "command": "COPY \"public\".\"city\""
 }
 }
]
 },
 "indexes": {
 "total": 48,
 "done": 39,
 "in-progress": [
 {
 "oid": 378283,
 "schema": "pgcopydb",
 "name": "sentinel_expr_idx",
 "isPrimary": false,
 "isUnique": true,
 "columns": "",
 "sql": "CREATE UNIQUE INDEX sentinel_expr_idx ON pgcopydb.sentinel USING btree ((1))",
 "restore-list-name": "pgcopydb sentinel_expr_idx dim",
 "table": {
 "oid": 378280,
 "schema": "pgcopydb",
 "name": "sentinel"
 },
 "process": {
 "pid": 74372,
 "start-time-epoch": 1662476080,
 "start-time-string": "2022-09-06 16:54:40 CEST"
 }
 },
 {
 "oid": 317980,
 "schema": "public",
 "name": "country_pkey",
 "isPrimary": true,
 "isUnique": true,
 "columns": "country_id",
 "sql": "CREATE UNIQUE INDEX country_pkey ON public.country USING btree (country_id)",
 "restore-list-name": "public country_pkey postgres",
 "table": {
 "oid": 317865,
 "schema": "public",
 "name": "country"
 },
 "constraint": {
 "oid": 317981,
 "name": "country_pkey",
 "sql": "PRIMARY KEY (country_id)",
 "restore-list-name": ""
 },
 "process": {
 "pid": 74358,
 "start-time-epoch": 1662476080,
 "start-time-string": "2022-09-06 16:54:40 CEST"
 }
 },
 {
 "oid": 317996,
 "schema": "public",
 "name": "staff_pkey",
 "isPrimary": true,
 "isUnique": true,
 "columns": "staff_id",
 "sql": "CREATE UNIQUE INDEX staff_pkey ON public.staff USING btree (staff_id)",
 "restore-list-name": "public staff_pkey postgres",
 "table": {
 "oid": 317946,
 "schema": "public",
 "name": "staff"
 },
 "constraint": {
 "oid": 317997,
 "name": "staff_pkey",
 "sql": "PRIMARY KEY (staff_id)",
 "restore-list-name": ""
 },
 "process": {
 "pid": 74368,
 "start-time-epoch": 1662476080,
 "start-time-string": "2022-09-06 16:54:40 CEST"
 }
 }
]
 }
}

pgcopydb stream

pgcopydb stream - Stream changes from source database

Warning

This mode of operations has been designed for unit testing only.

Consider using the pgcopydb clone (with the --follow option)
or the pgcopydb follow command instead.

Note

Some pgcopydb stream commands are still designed for normal operations,
rather than unit testing only.

The pgcopydb stream sentinel set startpos,
pgcopydb stream sentinel set endpos,
pgcopydb stream sentinel set apply, and
pgcopydb stream sentinel set prefetch commands are necessary to
communicate with the main pgcopydb clone --follow or pgcopydb
follow process. See Change Data Capture Example 1 for a detailed
example using pgcopydb stream sentinel set endpos.

Also the commands pgcopydb stream setup and
pgcopydb stream cleanup might be used directly in normal
operations. See Change Data Capture Example 2 for a detailed
example.

This command prefixes the following sub-commands:

pgcopydb stream
 setup Setup source and target systems for logical decoding
 cleanup cleanup source and target systems for logical decoding
 prefetch Stream JSON changes from the source database and transform them to SQL
 catchup Apply prefetched changes from SQL files to the target database
+ create Create resources needed for pgcopydb
+ drop Drop resources needed for pgcopydb
+ sentinel Maintain a sentinel table on the source database
 receive Stream changes from the source database
 transform Transform changes from the source database into SQL commands
 apply Apply changes from the source database into the target database

pgcopydb stream create
 slot Create a replication slot in the source database
 origin Create a replication origin in the target database

pgcopydb stream drop
 slot Drop a replication slot in the source database
 origin Drop a replication origin in the target database

pgcopydb stream sentinel
 create Create the sentinel table on the source database
 drop Drop the sentinel table on the source database
 get Get the sentinel table values on the source database
+ set Maintain a sentinel table on the source database

pgcopydb stream sentinel set
 startpos Set the sentinel start position LSN on the source database
 endpos Set the sentinel end position LSN on the source database
 apply Set the sentinel apply mode on the source database
 prefetch Set the sentinel prefetch mode on the source database

Those commands implement a part of the whole database replay operation as
detailed in section pgcopydb follow. Only use those commands to debug
a specific part, or because you know that you just want to implement that
step.

Note

The sub-commands stream setup then stream prefetch and stream
catchup are higher level commands, that use internal information to
know which files to process. Those commands also keep track of their
progress.

The sub-commands stream receive, stream transform, and stream
apply are lower level interface that work on given files. Those
commands still keep track of their progress, but have to be given more
information to work.

pgcopydb stream setup

pgcopydb stream setup - Setup source and target systems for logical decoding

The command pgcopydb stream setup connects to the source database and
creates a replication slot using the logical decoding plugin wal2json [https://github.com/eulerto/wal2json/],
then creates a pgcopydb.sentinel table, and then connects to the target
database and creates a replication origin positioned at the LSN position of
the just created replication slot.

pgcopydb stream setup: Setup source and target systems for logical decoding
usage: pgcopydb stream setup

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --slot-name Stream changes recorded by this slot
 --origin Name of the Postgres replication origin

pgcopydb stream cleanup

pgcopydb stream cleanup - cleanup source and target systems for logical decoding

The command pgcopydb stream cleanup connects to the source and target
databases to delete the objects created in the pgcopydb stream setup
step.

pgcopydb stream cleanup: cleanup source and target systems for logical decoding
usage: pgcopydb stream cleanup

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --slot-name Stream changes recorded by this slot
 --origin Name of the Postgres replication origin

pgcopydb stream prefetch

pgcopydb stream prefetch - Stream JSON changes from the source database and transform them to SQL

The command pgcopydb stream prefetch connects to the source database
using the logical replication protocl and the given replication slot, that
should be created with the logical decoding plugin wal2json [https://github.com/eulerto/wal2json/].

The prefetch command receives the changes from the source database in a
streaming fashion, and writes them in a series of JSON files named the same
as their origin WAL filename (with the .json extension). Each time a
JSON file is closed, a subprocess is started to transform the JSON into an
SQL file.

pgcopydb stream prefetch: Stream JSON changes from the source database and transform them to SQL
usage: pgcopydb stream prefetch

 --source Postgres URI to the source database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --slot-name Stream changes recorded by this slot
 --endpos LSN position where to stop receiving changes

pgcopydb stream catchup

pgcopydb stream catchup - Apply prefetched changes from SQL files to the target database

The command pgcopydb stream catchup connects to the target database and
applies changes from the SQL files that have been prepared with the
pgcopydb stream prefetch command.

pgcopydb stream catchup: Apply prefetched changes from SQL files to the target database
usage: pgcopydb stream catchup

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --slot-name Stream changes recorded by this slot
 --endpos LSN position where to stop receiving changes --origin Name of the Postgres replication origin

pgcopydb stream create slot

pgcopydb stream create slot - Create a replication slot in the source database

The command pgcopydb stream create slot connects to the source database
and executes a SQL query to create a logical replication slot using the
plugin wal2json.

pgcopydb create slot: Create a replication slot in the source database
usage: pgcopydb create slot

 --source Postgres URI to the source database
 --dir Work directory to use
 --snapshot Use snapshot obtained with pg_export_snapshot
 --slot-name Use this Postgres replication slot name

pgcopydb stream create origin

pgcopydb stream create origin - Create a replication origin in the target database

The command pgcopydb stream create origin connects to the target
database and executes a SQL query to create a logical replication origin.
The starting LSN position --startpos is required.

pgcopydb stream create origin: Create a replication origin in the target database
usage: pgcopydb stream create origin

 --target Postgres URI to the target database
 --dir Work directory to use
 --origin Use this Postgres origin name
 --start-pos LSN position from where to start applying changes

pgcopydb stream drop slot

pgcopydb stream drop slot - Drop a replication slot in the source database

The command pgcopydb stream drop slot connects to the source database
and executes a SQL query to drop the logical replication slot with the given
name (that defaults to pgcopydb).

pgcopydb stream drop slot: Drop a replication slot in the source database
usage: pgcopydb stream drop slot

 --source Postgres URI to the source database
 --dir Work directory to use
 --slot-name Use this Postgres replication slot name

pgcopydb stream drop origin

pgcopydb stream drop origin - Drop a replication origin in the target database

The command pgcopydb stream drop origin connects to the target database
and executes a SQL query to drop the logical replication origin with the
given name (that defaults to pgcopydb).

usage: pgcopydb stream drop origin

 --target Postgres URI to the target database
 --dir Work directory to use
 --origin Use this Postgres origin name

pgcopydb stream sentinel create

pgcopydb stream sentinel create - Create the sentinel table on the source database

The pgcopydb.sentinel table allows to remote control the prefetch and
catchup processes of the logical decoding implementation in pgcopydb.

pgcopydb stream sentinel create: Create the sentinel table on the source database
usage: pgcopydb stream sentinel create

 --source Postgres URI to the source database
 --startpos Start replaying changes when reaching this LSN
 --endpos Stop replaying changes when reaching this LSN

pgcopydb stream sentinel drop

pgcopydb stream sentinel drop - Drop the sentinel table on the source database

The pgcopydb.sentinel table allows to remote control the prefetch and
catchup processes of the logical decoding implementation in pgcopydb.

pgcopydb stream sentinel drop: Drop the sentinel table on the source database
usage: pgcopydb stream sentinel drop

 --source Postgres URI to the source database

pgcopydb stream sentinel get

pgcopydb stream sentinel get - Get the sentinel table values on the source database

pgcopydb stream sentinel get: Get the sentinel table values on the source database
usage: pgcopydb stream sentinel get

 --source Postgres URI to the source database
 --json Format the output using JSON

pgcopydb stream sentinel set startpos

pgcopydb stream sentinel set startpos - Set the sentinel start position LSN on the source database

pgcopydb stream sentinel set startpos: Set the sentinel start position LSN on the source database
usage: pgcopydb stream sentinel set startpos <start LSN>

 --source Postgres URI to the source database

pgcopydb stream sentinel set endpos

pgcopydb stream sentinel set endpos - Set the sentinel end position LSN on the source database

pgcopydb stream sentinel set endpos: Set the sentinel end position LSN on the source database
usage: pgcopydb stream sentinel set endpos <end LSN>

 --source Postgres URI to the source database
 --current Use pg_current_wal_flush_lsn() as the endpos

pgcopydb stream sentinel set apply

pgcopydb stream sentinel set apply - Set the sentinel apply mode on the source database

pgcopydb stream sentinel set apply: Set the sentinel apply mode on the source database
usage: pgcopydb stream sentinel set apply

 --source Postgres URI to the source database

pgcopydb stream sentinel set prefetch

pgcopydb stream sentinel set prefetch - Set the sentinel prefetch mode on the source database

pgcopydb stream sentinel set prefetch: Set the sentinel prefetch mode on the source database
usage: pgcopydb stream sentinel set prefetch

 --source Postgres URI to the source database

pgcopydb stream receive

pgcopydb stream receive - Stream changes from the source database

The command pgcopydb stream receive connects to the source database
using the logical replication protocl and the given replication slot, that
should be created with the logical decoding plugin wal2json [https://github.com/eulerto/wal2json/].

The receive command receives the changes from the source database in a
streaming fashion, and writes them in a series of JSON files named the same
as their origin WAL filename (with the .json extension).

pgcopydb stream receive: Stream changes from the source database
usage: pgcopydb stream receive --source ...

 --source Postgres URI to the source database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --slot-name Stream changes recorded by this slot
 --endpos LSN position where to stop receiving changes

pgcopydb stream transform

pgcopydb stream transform - Transform changes from the source database into SQL commands

The command pgcopydb stream transform transforms a JSON file as received
by the pgcopydb stream receive command into an SQL file with one query
per line.

pgcopydb stream transform: Transform changes from the source database into SQL commands
usage: pgcopydb stream transform <json filename> <sql filename>

 --source Postgres URI to the source database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb stream apply

pgcopydb stream apply - Apply changes from the source database into the target database

The command pgcopydb stream apply applies a SQL file as prepared by the
pgcopydb stream transform command in the target database. The apply
process tracks progress thanks to the Postgres API for Replication Progress
Tracking [https://www.postgresql.org/docs/current/replication-origins.html].

pgcopydb stream apply: Apply changes from the source database into the target database
usage: pgcopydb stream apply <sql filename>

 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --origin Name of the Postgres replication origin

Options

The following options are available to pgcopydb stream sub-commands:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

Change Data Capture files are stored in the cdc sub-directory of the
--dir option when provided, otherwise see XDG_DATA_HOME environment
variable below.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

To be able to resume a streaming operation in a consistent way, all that’s
required is re-using the same replication slot as in previous run(s).

	--slot-name

	Logical replication slot to use. At the moment pgcopydb doesn’t know how
to create the logical replication slot itself. The slot should be created
within the same transaction snapshot as the initial data copy.

Must be using the wal2json [https://github.com/eulerto/wal2json/] output plugin, available with
format-version 2.

	--endpos

	Logical replication target LSN to use. Automatically stop replication and
exit with normal exit status 0 when receiving reaches the specified LSN.
If there’s a record with LSN exactly equal to lsn, the record will be
output.

The --endpos option is not aware of transaction boundaries and may
truncate output partway through a transaction. Any partially output
transaction will not be consumed and will be replayed again when the slot
is next read from. Individual messages are never truncated.

See also documentation for pg_recvlogical [https://www.postgresql.org/docs/current/app-pgrecvlogical.html].

	--origin

	Logical replication target system needs to track the transactions that
have been applied already, so that in case we get disconnected or need to
resume operations we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in
Replication Progress Tracking [https://www.postgresql.org/docs/current/replication-origins.html]. This option allows to pick your own
node name and defaults to “pgcopydb”. Picking a different name is useful
in some advanced scenarios like migrating several sources in the same
target, where each source should have their own unique origin node name.

	--startpos

	Logical replication target system registers progress by assigning a
current LSN to the --origin node name. When creating an origin on the
target database system, it is required to provide the current LSN from the
source database system, in order to properly bootstrap pgcopydb logical
decoding.

	--verbose

	Increase current verbosity. The default level of verbosity is INFO. In
ascending order pgcopydb knows about the following verbosity levels:
FATAL, ERROR, WARN, INFO, NOTICE, DEBUG, TRACE.

	--debug

	Set current verbosity to DEBUG level.

	--trace

	Set current verbosity to TRACE level.

	--quiet

	Set current verbosity to ERROR level.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

XDG_DATA_HOME

The pgcopydb command creates Change Data Capture files in the standard
place XDG_DATA_HOME, which defaults to ~/.local/share. See the XDG
Base Directory Specification [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html].

Examples

As an example here is the output generated from running the cdc test case,
where a replication slot is created before the initial copy of the data, and
then the following INSERT statement is executed:

 1 begin;
 2
 3 with r as
 4 (
 5 insert into rental(rental_date, inventory_id, customer_id, staff_id, last_update)
 6 select '2022-06-01', 371, 291, 1, '2022-06-01'
 7 returning rental_id, customer_id, staff_id
 8)
 9 insert into payment(customer_id, staff_id, rental_id, amount, payment_date)
10 select customer_id, staff_id, rental_id, 5.99, '2020-06-01'
11 from r;
12
13 commit;

The command then looks like the following, where the --endpos has been
extracted by calling the pg_current_wal_lsn() SQL function:

$ pgcopydb stream receive --slot-name test_slot --restart --endpos 0/236D668 -vv
16:01:57 157 INFO Running pgcopydb version 0.7 from "/usr/local/bin/pgcopydb"
16:01:57 157 DEBUG copydb.c:406 Change Data Capture data is managed at "/var/lib/postgres/.local/share/pgcopydb"
16:01:57 157 INFO copydb.c:73 Using work dir "/tmp/pgcopydb"
16:01:57 157 DEBUG pidfile.c:143 Failed to signal pid 34: No such process
16:01:57 157 DEBUG pidfile.c:146 Found a stale pidfile at "/tmp/pgcopydb/pgcopydb.pid"
16:01:57 157 INFO pidfile.c:147 Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
16:01:57 157 INFO copydb.c:254 Work directory "/tmp/pgcopydb" already exists
16:01:57 157 INFO copydb.c:258 A previous run has run through completion
16:01:57 157 INFO copydb.c:151 Removing directory "/tmp/pgcopydb"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb" && mkdir -p "/tmp/pgcopydb"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/schema" && mkdir -p "/tmp/pgcopydb/schema"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run" && mkdir -p "/tmp/pgcopydb/run"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run/tables" && mkdir -p "/tmp/pgcopydb/run/tables"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run/indexes" && mkdir -p "/tmp/pgcopydb/run/indexes"
16:01:57 157 DEBUG copydb.c:445 rm -rf "/var/lib/postgres/.local/share/pgcopydb" && mkdir -p "/var/lib/postgres/.local/share/pgcopydb"
16:01:57 157 DEBUG pgsql.c:2476 starting log streaming at 0/0 (slot test_slot)
16:01:57 157 DEBUG pgsql.c:485 Connecting to [source] "postgres://postgres@source:/postgres?password=****&replication=database"
16:01:57 157 DEBUG pgsql.c:2009 IDENTIFY_SYSTEM: timeline 1, xlogpos 0/236D668, systemid 7104302452422938663
16:01:57 157 DEBUG pgsql.c:3188 RetrieveWalSegSize: 16777216
16:01:57 157 DEBUG pgsql.c:2547 streaming initiated
16:01:57 157 INFO stream.c:237 Now streaming changes to "/var/lib/postgres/.local/share/pgcopydb/000000010000000000000002.json"
16:01:57 157 DEBUG stream.c:341 Received action B for XID 488 in LSN 0/236D638
16:01:57 157 DEBUG stream.c:341 Received action I for XID 488 in LSN 0/236D178
16:01:57 157 DEBUG stream.c:341 Received action I for XID 488 in LSN 0/236D308
16:01:57 157 DEBUG stream.c:341 Received action C for XID 488 in LSN 0/236D638
16:01:57 157 DEBUG pgsql.c:2867 pgsql_stream_logical: endpos reached at 0/236D668
16:01:57 157 DEBUG stream.c:382 Flushed up to 0/236D668 in file "/var/lib/postgres/.local/share/pgcopydb/000000010000000000000002.json"
16:01:57 157 INFO pgsql.c:3030 Report write_lsn 0/236D668, flush_lsn 0/236D668
16:01:57 157 DEBUG pgsql.c:3107 end position 0/236D668 reached by WAL record at 0/236D668
16:01:57 157 DEBUG pgsql.c:408 Disconnecting from [source] "postgres://postgres@source:/postgres?password=****&replication=database"
16:01:57 157 DEBUG stream.c:414 streamClose: closing file "/var/lib/postgres/.local/share/pgcopydb/000000010000000000000002.json"
16:01:57 157 INFO stream.c:171 Streaming is now finished after processing 4 messages

The JSON file then contains the following content, from the wal2json
logical replication plugin. Note that you’re seeing diffent LSNs here
because each run produces different ones, and the captures have not all been
made from the same run.

$ cat /var/lib/postgres/.local/share/pgcopydb/000000010000000000000002.json
{"action":"B","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","lsn":"0/236F5A8","nextlsn":"0/236F5D8"}
{"action":"I","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","lsn":"0/236F0E8","schema":"public","table":"rental","columns":[{"name":"rental_id","type":"integer","value":16050},{"name":"rental_date","type":"timestamp with time zone","value":"2022-06-01 00:00:00+00"},{"name":"inventory_id","type":"integer","value":371},{"name":"customer_id","type":"integer","value":291},{"name":"return_date","type":"timestamp with time zone","value":null},{"name":"staff_id","type":"integer","value":1},{"name":"last_update","type":"timestamp with time zone","value":"2022-06-01 00:00:00+00"}]}
{"action":"I","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","lsn":"0/236F278","schema":"public","table":"payment_p2020_06","columns":[{"name":"payment_id","type":"integer","value":32099},{"name":"customer_id","type":"integer","value":291},{"name":"staff_id","type":"integer","value":1},{"name":"rental_id","type":"integer","value":16050},{"name":"amount","type":"numeric(5,2)","value":5.99},{"name":"payment_date","type":"timestamp with time zone","value":"2020-06-01 00:00:00+00"}]}
{"action":"C","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","lsn":"0/236F5A8","nextlsn":"0/236F5D8"}

It’s then possible to transform the JSON into SQL:

$ pgcopydb stream transform ./tests/cdc/000000010000000000000002.json /tmp/000000010000000000000002.sql

And the SQL file obtained looks like this:

$ cat /tmp/000000010000000000000002.sql
BEGIN; -- {"xid":489,"lsn":"0/236F5A8"}
INSERT INTO "public"."rental" (rental_id, rental_date, inventory_id, customer_id, return_date, staff_id, last_update) VALUES (16050, '2022-06-01 00:00:00+00', 371, 291, NULL, 1, '2022-06-01 00:00:00+00');
INSERT INTO "public"."payment_p2020_06" (payment_id, customer_id, staff_id, rental_id, amount, payment_date) VALUES (32099, 291, 1, 16050, 5.99, '2020-06-01 00:00:00+00');
COMMIT; -- {"xid": 489,"lsn":"0/236F5A8"}

pgcopydb configuration

Manual page for the configuration of pgcopydb. The pgcopydb command
accepts sub-commands and command line options, see the manual for those
commands for details. The only setup that pgcopydb commands accept is
the filtering.

Filtering

Filtering allows to skip some object definitions and data when copying from
the source to the target database. The pgcopydb commands that accept the
option --filter (or --filters) expect an existing filename as the
option argument. The given filename is read in the INI file format, but only
uses sections and option keys. Option values are not used.

Here is an inclusion based filter configuration example:

 1[include-only-table]
 2public.allcols
 3public.csv
 4public.serial
 5public.xzero
 6
 7[exclude-index]
 8public.foo_gin_tsvector
 9
10[exclude-table-data]
11public.csv

Here is an exclusion based filter configuration example:

 1[exclude-schema]
 2foo
 3bar
 4expected
 5
 6[exclude-table]
 7"schema"."name"
 8schema.othername
 9err.errors
10public.serial
11
12[exclude-index]
13schema.indexname
14
15[exclude-table-data]
16public.bar
17nsitra.test1

Filtering can be done with pgcopydb by using the following rules, which are
also the name of the sections of the INI file.

include-only-tables

This section allows listing the exclusive list of the source tables to copy
to the target database. No other table will be processed by pgcopydb.

Each line in that section should be a schema-qualified table name. Postgres
identifier quoting rules [https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS] can be used to avoid ambiguity.

When the section include-only-tables is used in the filtering
configuration then the sections exclude-schema and exclude-table are
disallowed. We would not know how to handle tables that exist on the source
database and are not part of any filter.

exclude-schema

This section allows adding schemas (Postgres namespaces) to the exclusion
filters. All the tables that belong to any listed schema in this section are
going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is
used.

exclude-table

This section allows to add a list of qualified table names to the exclusion
filters. All the tables that are listed in the exclude-table section are
going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is
used.

exclude-index

This section allows to add a list of qualified index names to the exclusion
filters. It is then possible for pgcopydb to operate on a table and skip a
single index definition that belong to a table that is still processed.

exclude-table-data

This section allows to skip copying the data from a list of qualified table
names. The schema, index, constraints, etc of the table are still copied
over.

Reviewing and Debugging the filters

Filtering a pg_restore archive file is done through rewriting the
archive catalog obtained with pg_restore --list. That’s a little hackish
at times, and we also have to deal with dependencies in pgcopydb itself.

The following commands can be used to explore a set of filtering rules:

	pgcopydb list depends

	pgcopydb restore parse-list

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pgcopydb’s documentation!

 		
 Introduction to pgcopydb

 		
 Feature Matrix

 		
 pgcopydb uses pg_dump and pg_restore

 		
 Change Data Capture, or fork and follow

 		
 Design Considerations

 		
 Bypass intermediate files for the TABLE DATA

 		
 Notes about concurrency

 		
 For each table, build all indexes concurrently

 		
 Same-table Concurrency

 		
 Significant differences when using same-table COPY concurrency

 		
 Same-table COPY concurrency performance limitations

 		
 Installing pgcopydb

 		
 debian packages

 		
 RPM packages

 		
 Docker Images

 		
 Build from sources

 		
 Manual Pages

 		
 pgcopydb

 		
 Synopsis

 		
 Description

 		
 pgcopydb help

 		
 pgcopydb version

 		
 pgcopydb clone

 		
 pgcopydb clone

 		
 pgcopydb fork

 		
 pgcopydb copy-db

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb follow

 		
 pgcopydb follow

 		
 Description

 		
 Replica Identity and lack of Primary Keys

 		
 Logical Decoding Pre-Fetching

 		
 The sentinel table, or the Remote Control

 		
 Options

 		
 Environment

 		
 pgcopydb snapshot

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb copy

 		
 pgcopydb copy db

 		
 pgcopydb copy roles

 		
 pgcopydb copy extensions

 		
 pgcopydb copy schema

 		
 pgcopydb copy data

 		
 pgcopydb copy table-data

 		
 pgcopydb copy blobs

 		
 pgcopydb copy sequences

 		
 pgcopydb copy indexes

 		
 pgcopydb copy constraints

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb dump

 		
 pgcopydb dump schema

 		
 pgcopydb dump pre-data

 		
 pgcopydb dump post-data

 		
 pgcopydb dump roles

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb restore

 		
 pgcopydb restore schema

 		
 pgcopydb restore pre-data

 		
 pgcopydb restore post-data

 		
 pgcopydb restore roles

 		
 pgcopydb restore parse-list

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb list

 		
 pgcopydb list extensions

 		
 pgcopydb list tables

 		
 pgcopydb list table-parts

 		
 pgcopydb list sequences

 		
 pgcopydb list indexes

 		
 pgcopydb list depends

 		
 pgcopydb list schema

 		
 pgcopydb list progress

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb stream

 		
 pgcopydb stream setup

 		
 pgcopydb stream cleanup

 		
 pgcopydb stream prefetch

 		
 pgcopydb stream catchup

 		
 pgcopydb stream create slot

 		
 pgcopydb stream create origin

 		
 pgcopydb stream drop slot

 		
 pgcopydb stream drop origin

 		
 pgcopydb stream sentinel create

 		
 pgcopydb stream sentinel drop

 		
 pgcopydb stream sentinel get

 		
 pgcopydb stream sentinel set startpos

 		
 pgcopydb stream sentinel set endpos

 		
 pgcopydb stream sentinel set apply

 		
 pgcopydb stream sentinel set prefetch

 		
 pgcopydb stream receive

 		
 pgcopydb stream transform

 		
 pgcopydb stream apply

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb configuration

 		
 Filtering

 		
 Reviewing and Debugging the filters

_static/file.png

_static/minus.png

_static/plus.png

