

Welcome to pgcopydb’s documentation!

The pgcopydb [https://github.com/dimitri/pgcopydb] project is an Open Source Software project. The development
happens at https://github.com/dimitri/pgcopydb and is public: everyone
is welcome to participate by opening issues, pull requests, giving feedback,
etc.

Remember that the first steps are to actually play with the pgcopydb
command, then read the entire available documentation (after all, I took the
time to write it), and then to address the community in a kind and polite
way — the same way you would expect people to use when addressing you.

Documentation Table of Contents

	Introduction to pgcopydb
	How to copy a Postgres database

	Notes about concurrency

	Design Considerations
	Bypass intermediate files for the TABLE DATA

	For each table, build all indexes concurrently

	Installing pgcopydb
	debian packages

	RPM packages

	Docker Images

	Build from sources

	Manual Pages
	pgcopydb

	pgcopydb copy-db

	pgcopydb dump

	pgcopydb restore

	pgcopydb list

	pgcopydb copy

	pgcopydb configuration

Indices and tables

	Index

	Module Index

	Search Page

Introduction to pgcopydb

pgcopydb is a tool that automates running pg_dump -jN | pg_restore -jN
between two running Postgres servers. To make a copy of a database to
another server as quickly as possible, one would like to use the parallel
options of pg_dump and still be able to stream the data to as many
pg_restore jobs.

When using pgcopydb it is possible to achieve the result outlined before
with this simple command line:

$ export PGCOPYDB_SOURCE_PGURI="postgres://user@source.host.dev/dbname"
$ export PGCOPYDB_TARGET_PGURI="postgres://role@target.host.dev/dbname"

$ pgcopydb copy-db --table-jobs 4 --index-jobs 4

How to copy a Postgres database

Then pgcopydb implements the following steps:

	pgcopydb calls into pg_dump to produce the pre-data section
and the post-data sections of the dump using Postgres custom
format.

	The pre-data section of the dump is restored on the target database
using the pg_restore command, creating all the Postgres objects
from the source database into the target database.

	pgcopydb gets the list of ordinary and partitioned tables and for
each of them runs COPY the data from the source to the target in a
dedicated sub-process, and starts and control the sub-processes until
all the data has been copied over.

A Postgres connection and a SQL query to the Postgres catalog table
pg_class is used to get the list of tables with data to copy around,
and the reltuples is used to start with the tables with the greatest
number of rows first, as an attempt to minimize the copy time.

	An auxiliary process is started concurrently to the main COPY workers.
This auxiliary process loops through all the Large Objects found on the
source database and copies its data parts over to the target database,
much like pg_dump itself would.

This step is much like pg_dump | pg_restore for large objects data
parts, except that there isn’t a good way to do just that with the
tooling.

	In each copy table sub-process, as soon as the data copying is done,
then pgcopydb gets the list of index definitions attached to the
current target table and creates them in parallel.

The primary indexes are created as UNIQUE indexes at this stage.

	Then the PRIMARY KEY constraints are created USING the just built
indexes. This two-steps approach allows the primary key index itself to
be created in parallel with other indexes on the same table, avoiding
an EXCLUSIVE LOCK while creating the index.

	Then VACUUM ANALYZE is run on each target table as soon as the data
and indexes are all created.

	Then pgcopydb gets the list of the sequences on the source database and
for each of them runs a separate query on the source to fetch the
last_value and the is_called metadata the same way that pg_dump
does.

For each sequence, pgcopydb then calls pg_catalog.setval() on the
target database with the information obtained on the source database.

	The final stage consists now of running the pg_restore command for
the post-data section script for the whole database, and that’s
where the foreign key constraints and other elements are created.

The post-data script is filtered out using the pg_restore
--use-list option so that indexes and primary key constraints already
created in step 4. are properly skipped now.

Notes about concurrency

In the previous steps list, the idea of executing some of the tasks
concurrently to one another is introduced. The concurrency is implemented by
ways of using the fork() system call, so pgcopydb creates sub-processes
that each handle a part of the work.

The process tree then looks like the following:

	
	main process
	
	
	per-table COPY DATA process
	
	per-index CREATE INDEX process

	another index

	a third one on the same table

	
	another table to COPY DATA from source to target
	
	with another index

When starting with the TABLE DATA copying step, then pgcopydb creates as
many sub-processes as specified by the --table-jobs command line option
(or the environment variable PGCOPYDB_TARGET_TABLE_JOBS).

Then as soon as the COPY command is done, another sub-process can be
created. At this time in the process, pgcopydb might be running more
sub-processes than has been setup. The setup limits how many of those
sub-processes are concurrently executing a COPY command.

The process that’s implementing the COPY command now turns its attention to
the building of the indexes attached to the given table. That’s because the
CREATE INDEX command only consumes resources (CPU, memory, etc) on the
target Postgres instance server, the pgcopydb process just sends the command
and wait until completion.

It is possible with Postgres to create several indexes for the same table in
parallel, for that, the client just needs to open a separate database
connection for each index and run each CREATE INDEX command in its own
connection, at the same time. In pgcopydb this is implemented by running one
sub-process per index to create.

The command line option --index-jobs is used to limit how many CREATE
INDEX commands are running at any given time — by using a Unix semaphore.
So when running with --index-jobs 2 and when a specific table has 3
indexes attached to it, then the 3rd index creation is blocked until another
index is finished.

Postgres introduced the configuration parameter synchronize_seqscans [https://postgresqlco.nf/doc/en/param/synchronize_seqscans/] in
version 8.3, eons ago. It is on by default and allows the following
behavior:

This allows sequential scans of large tables to synchronize with each
other, so that concurrent scans read the same block at about the same time
and hence share the I/O workload.

That’s why pgcopydb takes the extra step and makes sure to create all your
indexes in parallel to one-another, going the extra mile when it comes to
indexes that are associated with a constraint, as detailed in our section
For each table, build all indexes concurrently.

That said, the index jobs setup is global for the whole pgcopydb operation
rather than per-table. It means that in some cases, indexes for the same
table might be created in a sequential fashion, depending on exact timing of
the other index builds.

The --index-jobs option has been made global so that it’s easier to
setup to the count of available CPU cores on the target Postgres instance.
Usually, a given CREATE INDEX command uses 100% of a single core.

Design Considerations

The reason why pgcopydb has been developed is mostly to allow two
aspects that are not possible to achieve directly with pg_dump and
pg_restore, and that requires just enough fiddling around that not many
scripts have been made available to automate around.

Bypass intermediate files for the TABLE DATA

First aspect is that for pg_dump and pg_restore to implement
concurrency they need to write to an intermediate file first.

The docs for pg_dump [https://www.postgresql.org/docs/current/app-pgdump.html] say the following about the --jobs parameter:

You can only use this option with the directory output format because this
is the only output format where multiple processes can write their data at
the same time.

The docs for pg_restore [https://www.postgresql.org/docs/current/app-pgrestore.html] say the following about the --jobs
parameter:

Only the custom and directory archive formats are supported with this
option. The input must be a regular file or directory (not, for example, a
pipe or standard input).

So the first idea with pgcopydb is to provide the --jobs concurrency and
bypass intermediate files (and directories) altogether, at least as far as
the actual TABLE DATA set is concerned.

The trick to achieve that is that pgcopydb must be able to connect to the
source database during the whole operation, when pg_restore may be used
from an export on-disk, without having to still be able to connect to the
source database. In the context of pgcopydb requiring access to the source
database is fine. In the context of pg_restore, it would not be
acceptable.

For each table, build all indexes concurrently

The other aspect that pg_dump and pg_restore are not very smart about is
how they deal with the indexes that are used to support constraints, in
particular unique constraints and primary keys.

Those indexes are exported using the ALTER TABLE command directly. This is
fine because the command creates both the constraint and the underlying
index, so the schema in the end is found as expected.

That said, those ALTER TABLE ... ADD CONSTRAINT commands require a level
of locking that prevents any concurrency. As we can read on the docs for
ALTER TABLE [https://www.postgresql.org/docs/current/sql-altertable.html]:

Although most forms of ADD table_constraint require an ACCESS EXCLUSIVE
lock, ADD FOREIGN KEY requires only a SHARE ROW EXCLUSIVE lock. Note that
ADD FOREIGN KEY also acquires a SHARE ROW EXCLUSIVE lock on the referenced
table, in addition to the lock on the table on which the constraint is
declared.

The trick is then to first issue a CREATE UNIQUE INDEX statement and when
the index has been built then issue a second command in the form of ALTER
TABLE ... ADD CONSTRAINT ... PRIMARY KEY USING INDEX ..., as in the
following example taken from the logs of actually running pgcopydb:

21:52:06 68898 INFO COPY "demo"."tracking";
21:52:06 68899 INFO COPY "demo"."client";
21:52:06 68899 INFO Creating 2 indexes for table "demo"."client"
21:52:06 68906 INFO CREATE UNIQUE INDEX client_pkey ON demo.client USING btree (client);
21:52:06 68907 INFO CREATE UNIQUE INDEX client_pid_key ON demo.client USING btree (pid);
21:52:06 68898 INFO Creating 1 indexes for table "demo"."tracking"
21:52:06 68908 INFO CREATE UNIQUE INDEX tracking_pkey ON demo.tracking USING btree (client, ts);
21:52:06 68907 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pid_key" UNIQUE USING INDEX "client_pid_key";
21:52:06 68906 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pkey" PRIMARY KEY USING INDEX "client_pkey";
21:52:06 68908 INFO ALTER TABLE "demo"."tracking" ADD CONSTRAINT "tracking_pkey" PRIMARY KEY USING INDEX "tracking_pkey";

This trick is worth a lot of performance gains on its own, as has been
discovered and experienced and appreciated by pgloader [https://github.com/dimitri/pgloader] users already.

Installing pgcopydb

Several distributions are available for pgcopydb.

debian packages

Binary packages for debian and derivatives (ubuntu) are available from
apt.postgresql.org [https://wiki.postgresql.org/wiki/Apt] repository, install by following the linked
documentation and then:

$ sudo apt-get install pgcopydb

RPM packages

The Postgres community repository for RPM packages is yum.postgresql.org [https://yum.postgresql.org]
and does not include binary packages for pgcopydb at this time.

Docker Images

Docker images are maintained for each tagged release at dockerhub, and also
built from the CI/CD integration on GitHub at each commit to the main
branch.

The DockerHub dimitri/pgcopydb [https://hub.docker.com/r/dimitri/pgcopydb#!] repository is where the tagged releases
are made available. The image uses the Postgres version currently in debian
stable.

To use this docker image:

$ docker run --rm -it dimitri/pgcopydb:v0.7 pgcopydb --version

Or you can use the CI/CD integration that publishes packages from the main
branch to the GitHub docker repository:

$ docker pull ghcr.io/dimitri/pgcopydb:latest
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --version
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --help

Build from sources

Building from source requires a list of build-dependencies that’s comparable
to that of Postgres itself. The pgcopydb source code is written in C and the
build process uses a GNU Makefile.

See our main Dockerfile [https://github.com/dimitri/pgcopydb/blob/main/Dockerfile] for a complete recipe to build pgcopydb when
using a debian environment.

Then the build process is pretty simple, in its simplest form you can just
use make clean install, if you want to be more fancy consider also:

$ make -s clean
$ make -s -j12 install

Manual Pages

The pgcopydb command provides several sub-commands. Each of them have
their own manual page.

Manual Pages:

	pgcopydb

	pgcopydb copy-db

	pgcopydb dump

	pgcopydb restore

	pgcopydb list

	pgcopydb copy

	pgcopydb configuration

pgcopydb

pgcopydb - copy an entire Postgres database from source to target

Synopsis

pgcopydb provides the following commands:

pgcopydb
 copy-db Copy an entire database from source to target
+ dump Dump database objects from a Postgres instance
+ restore Restore database objects into a Postgres instance
+ list List database objects from a Postgres instance
 help print help message
 version print pgcopydb version

Description

The pgcopydb command implements a full migration of an entire Postgres
database from a source instance to a target instance. Both the Postgres
instances must be available for the entire duration of the command.

Help

To get the full recursive list of supported commands, use:

pgcopydb help

Version

To grab the version of pgcopydb that you’re using, use:

pgcopydb --version
pgcopydb version

pgcopydb copy-db

pgcopydb copy-db - copy an entire Postgres database from source to target

Synopsis

The command pgcopydb copy-db copies a database from the given source
Postgres instance to the target Postgres instance.

pgcopydb copy-db: Copy an entire database from source to target
usage: pgcopydb copy-db --source <URI> --target <URI> [...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --skip-large-objects Skip copying large objects (blobs)
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

Description

The pgcopydb copy-db command implements the following steps:

	pgcopydb calls into pg_dump to produce the pre-data section
and the post-data sections of the dump using Postgres custom
format.

	The pre-data section of the dump is restored on the target database
using the pg_restore command, creating all the Postgres objects
from the source database into the target database.

	pgcopydb gets the list of ordinary and partitioned tables and for
each of them runs COPY the data from the source to the target in a
dedicated sub-process, and starts and control the sub-processes until
all the data has been copied over.

A Postgres connection and a SQL query to the Postgres catalog table
pg_class is used to get the list of tables with data to copy around,
and the reltuples is used to start with the tables with the greatest
number of rows first, as an attempt to minimize the copy time.

	An auxiliary process is started concurrently to the main COPY workers.
This auxiliary process loops through all the Large Objects found on the
source database and copies its data parts over to the target database,
much like pg_dump itself would.

This step is much like pg_dump | pg_restore for large objects data
parts, except that there isn’t a good way to do just that with the
tooling.

	In each copy table sub-process, as soon as the data copying is done,
then pgcopydb gets the list of index definitions attached to the
current target table and creates them in parallel.

The primary indexes are created as UNIQUE indexes at this stage.

	Then the PRIMARY KEY constraints are created USING the just built
indexes. This two-steps approach allows the primary key index itself to
be created in parallel with other indexes on the same table, avoiding
an EXCLUSIVE LOCK while creating the index.

	Then VACUUM ANALYZE is run on each target table as soon as the data
and indexes are all created.

	Then pgcopydb gets the list of the sequences on the source database and
for each of them runs a separate query on the source to fetch the
last_value and the is_called metadata the same way that pg_dump
does.

For each sequence, pgcopydb then calls pg_catalog.setval() on the
target database with the information obtained on the source database.

	The final stage consists now of running the pg_restore command for
the post-data section script for the whole database, and that’s
where the foreign key constraints and other elements are created.

The post-data script is filtered out using the pg_restore
--use-list option so that indexes and primary key constraints already
created in step 4. are properly skipped now.

Options

The following options are available to pgcopydb copy-db:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--table-jobs

	How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be
running at the same time that this limit while the CREATE INDEX operations
are in progress, though then the processes are only waiting for the target
Postgres instance to do all the work.

	--index-jobs

	How many indexes can be built in parallel, globally. A good option is to
set this option to the count of CPU cores that are available on the
Postgres target system, minus some cores that are going to be used for
handling the COPY operations.

	--drop-if-exists

	When restoring the schema on the target Postgres instance, pgcopydb
actually uses pg_restore. When this options is specified, then the
following pg_restore options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row,
either to fix a previous mistake or for instance when used in a continuous
integration system.

This option causes DROP TABLE and DROP INDEX and other DROP
commands to be used. Make sure you understand what you’re doing here!

	--no-owner

	Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET
SESSION AUTHORIZATION statements to set ownership of created schema
elements. These statements will fail unless the initial connection to the
database is made by a superuser (or the same user that owns all of the
objects in the script). With --no-owner, any user name can be used for
the initial connection, and this user will own all the created objects.

	--skip-large-objects

	Skip copying large objects, also known as blobs, when copying the data
from the source database to the target database.

	--filters <filename>

	This option allows to exclude table and indexes from the copy operations.
See Filtering for details about the expected file format and the
filtering options available.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel.
When --table-jobs is ommitted from the command line, then this
environment variable is used.

PGCOPYDB_TARGET_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in
parallel. When --index-jobs is ommitted from the command line, then
this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

Examples

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"
$ export PGCOPYDB_DROP_IF_EXISTS=on

$ pgcopydb copy-db --table-jobs 8 --index-jobs 12
10:04:49 29268 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
10:04:49 29268 INFO [TARGET] Copying database into "port=54311 dbname=plop"
10:04:49 29268 INFO Found a stale pidfile at "/tmp/pgcopydb/pgcopydb.pid"
10:04:49 29268 WARN Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
10:04:49 29268 WARN Directory "/tmp/pgcopydb" already exists: removing it entirely
10:04:49 29268 INFO STEP 1: dump the source database schema (pre/post data)
...
10:04:52 29268 INFO STEP 3: copy data from source to target in sub-processes
10:04:52 29268 INFO STEP 4: create indexes and constraints in parallel
10:04:52 29268 INFO STEP 5: vacuum analyze each table
10:04:52 29268 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
10:04:52 29268 INFO Fetched information for 56 tables
...
10:04:53 29268 INFO STEP 6: restore the post-data section to the target database
...

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 1s275 1
 Prepare Schema target 1s560 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 1s095 8 + 12
 COPY (cumulative) both 2s645 8
 CREATE INDEX (cumulative) target 333ms 12
 Finalize Schema target 29ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 4s013 8 + 12
 --- ---------- ---------- ------------

pgcopydb dump

pgcopydb dump - Dump database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb dump
 schema Dump source database schema as custom files in target directory
 pre-data Dump source database pre-data schema as custom files in target directory
 post-data Dump source database post-data schema as custom files in target directory

pgcopydb dump schema

pgcopydb dump schema - Dump source database schema as custom files in target directory

The command pgcopydb dump schema uses pg_dump to export SQL schema
definitions from the given source Postgres instance.

pgcopydb dump schema: Dump source database schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb dump pre-data

pgcopydb dump pre-data - Dump source database pre-data schema as custom files in target directory

The command pgcopydb dump pre-data uses pg_dump to export SQL schema
pre-data definitions from the given source Postgres instance.

pgcopydb dump pre-data: Dump source database pre-data schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb dump post-data

pgcopydb dump post-data - Dump source database post-data schema as custom files in target directory

The command pgcopydb dump post-data uses pg_dump to export SQL schema
post-data definitions from the given source Postgres instance.

pgcopydb dump post-data: Dump source database post-data schema as custom files in target directory
usage: pgcopydb dump schema --source <URI> --target <dir>

 --source Postgres URI to the source database
 --target Directory where to save the dump files
 --snapshot Use snapshot obtained with pg_export_snapshot

Description

The pgcopydb dump schema command implements the first step of the full
database migration and fetches the schema definitions from the source
database.

When the command runs, it calls pg_dump to get first the pre-data schema
output in a Postgres custom file, and then again to get the post-data schema
output in another Postgres custom file.

The output files are written to the schema sub-directory of the
--target directory.

The pgcopydb dump pre-data and pgcopydb dump post-data are limiting
their action to respectively the pre-data and the post-data sections of the
pg_dump.

Options

The following options are available to pgcopydb dump schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Target directory where to write output and temporary files.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

Examples

First, using pgcopydb dump schema

$ pgcopydb dump schema --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/schema/pre.dump 'port=5501 dbname=demo'
09:35:22 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/schema/post.dump 'port=5501 dbname=demo'

Once the previous command is finished, the pg_dump output files can be found
in /tmp/target/schema and are named pre.dump and post.dump.
Other files and directories have been created.

$ find /tmp/target
/tmp/target
/tmp/target/pgcopydb.pid
/tmp/target/schema
/tmp/target/schema/post.dump
/tmp/target/schema/pre.dump
/tmp/target/run
/tmp/target/run/tables
/tmp/target/run/indexes

Then we have almost the same thing when using the other forms.

We can see that pgcopydb dump pre-data only does the pre-data section of
the dump.

$ pgcopydb dump pre-data --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/schema/pre.dump 'port=5501 dbname=demo'

And then pgcopydb dump post-data only does the post-data section of the
dump.

$ pgcopydb dump post-data --source "port=5501 dbname=demo" --target /tmp/target
09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"
09:35:21 3926 INFO Dumping database into directory "/tmp/target"
09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"
09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"
09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/schema/post.dump 'port=5501 dbname=demo'

pgcopydb restore

pgcopydb restore - Restore database objects into a Postgres instance

This command prefixes the following sub-commands:

pgcopydb restore
 schema Restore a database schema from custom files to target database
 pre-data Restore a database pre-data schema from custom file to target database
 post-data Restore a database post-data schema from custom file to target database
 parse-list Parse pg_restore --list output from custom file

pgcopydb restore schema

pgcopydb restore schema - Restore a database schema from custom files to target database

The command pgcopydb restore schema uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore schema: Restore a database schema from custom files to target database
usage: pgcopydb restore schema --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore pre-data

pgcopydb restore pre-data - Restore a database pre-data schema from custom file to target database

The command pgcopydb restore pre-data uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore pre-data: Restore a database pre-data schema from custom file to target database
usage: pgcopydb restore pre-data --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore post-data

pgcopydb restore post-data - Restore a database post-data schema from custom file to target database

The command pgcopydb restore post-data uses pg_restore to create the SQL
schema definitions from the given pgcopydb dump schema export directory.
This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore post-data: Restore a database post-data schema from custom file to target database
usage: pgcopydb restore post-data --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb restore parse-list

pgcopydb restore parse-list - Parse pg_restore –list output from custom file

The command pgcopydb restore parse-list outputs pg_restore to list the
archive catalog of the custom file format file that has been exported for
the post-data section.

When using the --filters option , then the source database connection is
used to grab all the dependend objects that should also be filtered, and the
output of the command shows those pg_restore catalog entries commented out.

A pg_restore archive catalog entry is commented out when its line starts
with a semi-colon character (;).

pgcopydb restore parse-list: Parse pg_restore --list output from custom file
usage: pgcopydb restore parse-list --dir <dir> [--source <URI>] --target <URI>

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

Description

The pgcopydb restore schema command implements the creation of SQL
objects in the target database, second and last steps of a full database
migration.

When the command runs, it calls pg_restore on the files found at the
expected location within the --target directory, which has typically
been created with the pgcopydb dump schema command.

The pgcopydb restore pre-data and pgcopydb restore post-data are
limiting their action to respectively the pre-data and the post-data files
in the source directory..

Options

The following options are available to pgcopydb restore schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--drop-if-exists

	When restoring the schema on the target Postgres instance, pgcopydb
actually uses pg_restore. When this options is specified, then the
following pg_restore options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row,
either to fix a previous mistake or for instance when used in a continuous
integration system.

This option causes DROP TABLE and DROP INDEX and other DROP
commands to be used. Make sure you understand what you’re doing here!

	--no-owner

	Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET
SESSION AUTHORIZATION statements to set ownership of created schema
elements. These statements will fail unless the initial connection to the
database is made by a superuser (or the same user that owns all of the
objects in the script). With --no-owner, any user name can be used for
the initial connection, and this user will own all the created objects.

	--filters <filename>

	This option allows to exclude table and indexes from the copy operations.
See Filtering for details about the expected file format and the
filtering options available.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

Environment

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

Examples

First, using pgcopydb restore schema

$ PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore schema --source /tmp/target/ --target "port=54314 dbname=demo"
09:54:37 20401 INFO Restoring database from "/tmp/target/"
09:54:37 20401 INFO Restoring database into "port=54314 dbname=demo"
09:54:37 20401 INFO Found a stale pidfile at "/tmp/target//pgcopydb.pid"
09:54:37 20401 WARN Removing the stale pid file "/tmp/target//pgcopydb.pid"
09:54:37 20401 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
09:54:37 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean --if-exists /tmp/target//schema/pre.dump
09:54:38 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean --if-exists --use-list /tmp/target//schema/post.list /tmp/target//schema/post.dump

Then the pgcopydb restore pre-data and pgcopydb restore post-data
would look the same with just a single call to pg_restore instead of the
both of them.

Using pgcopydb restore parse-list it’s possible to review the filtering
options and see how pg_restore catalog entries are being commented-out.

$ cat ./tests/filtering/include.ini
[include-only-table]
public.actor
public.category
public.film
public.film_actor
public.film_category
public.language
public.rental

[exclude-index]
public.idx_store_id_film_id

[exclude-table-data]
public.rental

$ pgcopydb restore parse-list --dir /tmp/pagila/pgcopydb --resume --not-consistent --filters ./tests/filtering/include.ini
11:41:22 75175 INFO Running pgcopydb version 0.5.8.ge0d2038 from "/Users/dim/dev/PostgreSQL/pgcopydb/./src/bin/pgcopydb/pgcopydb"
11:41:22 75175 INFO [SOURCE] Restoring database from "postgres://@:54311/pagila?"
11:41:22 75175 INFO [TARGET] Restoring database into "postgres://@:54311/plop?"
11:41:22 75175 INFO Using work dir "/tmp/pagila/pgcopydb"
11:41:22 75175 INFO Removing the stale pid file "/tmp/pagila/pgcopydb/pgcopydb.pid"
11:41:22 75175 INFO Work directory "/tmp/pagila/pgcopydb" already exists
11:41:22 75175 INFO Schema dump for pre-data and post-data section have been done
11:41:22 75175 INFO Restoring database from existing files at "/tmp/pagila/pgcopydb"
11:41:22 75175 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
11:41:22 75175 INFO Exported snapshot "00000003-0003209A-1" from the source database
3242; 2606 317973 CONSTRAINT public actor actor_pkey postgres
;3258; 2606 317975 CONSTRAINT public address address_pkey postgres
3245; 2606 317977 CONSTRAINT public category category_pkey postgres
;3261; 2606 317979 CONSTRAINT public city city_pkey postgres
;3264; 2606 317981 CONSTRAINT public country country_pkey postgres
;3237; 2606 317983 CONSTRAINT public customer customer_pkey postgres
3253; 2606 317985 CONSTRAINT public film_actor film_actor_pkey postgres
3256; 2606 317987 CONSTRAINT public film_category film_category_pkey postgres
3248; 2606 317989 CONSTRAINT public film film_pkey postgres
;3267; 2606 317991 CONSTRAINT public inventory inventory_pkey postgres
3269; 2606 317993 CONSTRAINT public language language_pkey postgres
3293; 2606 317995 CONSTRAINT public rental rental_pkey postgres
;3295; 2606 317997 CONSTRAINT public staff staff_pkey postgres
;3298; 2606 317999 CONSTRAINT public store store_pkey postgres
3246; 1259 318000 INDEX public film_fulltext_idx postgres
3243; 1259 318001 INDEX public idx_actor_last_name postgres
;3238; 1259 318002 INDEX public idx_fk_address_id postgres
;3259; 1259 318003 INDEX public idx_fk_city_id postgres
;3262; 1259 318004 INDEX public idx_fk_country_id postgres
;3270; 1259 318005 INDEX public idx_fk_customer_id postgres
3254; 1259 318006 INDEX public idx_fk_film_id postgres
3290; 1259 318007 INDEX public idx_fk_inventory_id postgres
3249; 1259 318008 INDEX public idx_fk_language_id postgres
3250; 1259 318009 INDEX public idx_fk_original_language_id postgres
;3272; 1259 318010 INDEX public idx_fk_payment_p2020_01_customer_id postgres
;3271; 1259 318011 INDEX public idx_fk_staff_id postgres
;3273; 1259 318012 INDEX public idx_fk_payment_p2020_01_staff_id postgres
;3275; 1259 318013 INDEX public idx_fk_payment_p2020_02_customer_id postgres
;3276; 1259 318014 INDEX public idx_fk_payment_p2020_02_staff_id postgres
;3278; 1259 318015 INDEX public idx_fk_payment_p2020_03_customer_id postgres
;3279; 1259 318016 INDEX public idx_fk_payment_p2020_03_staff_id postgres
;3281; 1259 318017 INDEX public idx_fk_payment_p2020_04_customer_id postgres
;3282; 1259 318018 INDEX public idx_fk_payment_p2020_04_staff_id postgres
;3284; 1259 318019 INDEX public idx_fk_payment_p2020_05_customer_id postgres
;3285; 1259 318020 INDEX public idx_fk_payment_p2020_05_staff_id postgres
;3287; 1259 318021 INDEX public idx_fk_payment_p2020_06_customer_id postgres
;3288; 1259 318022 INDEX public idx_fk_payment_p2020_06_staff_id postgres
;3239; 1259 318023 INDEX public idx_fk_store_id postgres
;3240; 1259 318024 INDEX public idx_last_name postgres
;3265; 1259 318025 INDEX public idx_store_id_film_id postgres
3251; 1259 318026 INDEX public idx_title postgres
;3296; 1259 318027 INDEX public idx_unq_manager_staff_id postgres
3291; 1259 318028 INDEX public idx_unq_rental_rental_date_inventory_id_customer_id postgres
;3274; 1259 318029 INDEX public payment_p2020_01_customer_id_idx postgres
;3277; 1259 318030 INDEX public payment_p2020_02_customer_id_idx postgres
;3280; 1259 318031 INDEX public payment_p2020_03_customer_id_idx postgres
;3283; 1259 318032 INDEX public payment_p2020_04_customer_id_idx postgres
;3286; 1259 318033 INDEX public payment_p2020_05_customer_id_idx postgres
;3289; 1259 318034 INDEX public payment_p2020_06_customer_id_idx postgres
;3299; 0 0 INDEX ATTACH public idx_fk_payment_p2020_01_staff_id postgres
;3301; 0 0 INDEX ATTACH public idx_fk_payment_p2020_02_staff_id postgres
;3303; 0 0 INDEX ATTACH public idx_fk_payment_p2020_03_staff_id postgres
;3305; 0 0 INDEX ATTACH public idx_fk_payment_p2020_04_staff_id postgres
;3307; 0 0 INDEX ATTACH public idx_fk_payment_p2020_05_staff_id postgres
;3309; 0 0 INDEX ATTACH public idx_fk_payment_p2020_06_staff_id postgres
;3300; 0 0 INDEX ATTACH public payment_p2020_01_customer_id_idx postgres
;3302; 0 0 INDEX ATTACH public payment_p2020_02_customer_id_idx postgres
;3304; 0 0 INDEX ATTACH public payment_p2020_03_customer_id_idx postgres
;3306; 0 0 INDEX ATTACH public payment_p2020_04_customer_id_idx postgres
;3308; 0 0 INDEX ATTACH public payment_p2020_05_customer_id_idx postgres
;3310; 0 0 INDEX ATTACH public payment_p2020_06_customer_id_idx postgres
3350; 2620 318035 TRIGGER public film film_fulltext_trigger postgres
3348; 2620 318036 TRIGGER public actor last_updated postgres
;3354; 2620 318037 TRIGGER public address last_updated postgres
3349; 2620 318038 TRIGGER public category last_updated postgres
;3355; 2620 318039 TRIGGER public city last_updated postgres
;3356; 2620 318040 TRIGGER public country last_updated postgres
;3347; 2620 318041 TRIGGER public customer last_updated postgres
3351; 2620 318042 TRIGGER public film last_updated postgres
3352; 2620 318043 TRIGGER public film_actor last_updated postgres
3353; 2620 318044 TRIGGER public film_category last_updated postgres
;3357; 2620 318045 TRIGGER public inventory last_updated postgres
3358; 2620 318046 TRIGGER public language last_updated postgres
3359; 2620 318047 TRIGGER public rental last_updated postgres
;3360; 2620 318048 TRIGGER public staff last_updated postgres
;3361; 2620 318049 TRIGGER public store last_updated postgres
;3319; 2606 318050 FK CONSTRAINT public address address_city_id_fkey postgres
;3320; 2606 318055 FK CONSTRAINT public city city_country_id_fkey postgres
;3311; 2606 318060 FK CONSTRAINT public customer customer_address_id_fkey postgres
;3312; 2606 318065 FK CONSTRAINT public customer customer_store_id_fkey postgres
3315; 2606 318070 FK CONSTRAINT public film_actor film_actor_actor_id_fkey postgres
3316; 2606 318075 FK CONSTRAINT public film_actor film_actor_film_id_fkey postgres
3317; 2606 318080 FK CONSTRAINT public film_category film_category_category_id_fkey postgres
3318; 2606 318085 FK CONSTRAINT public film_category film_category_film_id_fkey postgres
3313; 2606 318090 FK CONSTRAINT public film film_language_id_fkey postgres
3314; 2606 318095 FK CONSTRAINT public film film_original_language_id_fkey postgres
;3321; 2606 318100 FK CONSTRAINT public inventory inventory_film_id_fkey postgres
;3322; 2606 318105 FK CONSTRAINT public inventory inventory_store_id_fkey postgres
;3323; 2606 318110 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_customer_id_fkey postgres
;3324; 2606 318115 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_rental_id_fkey postgres
;3325; 2606 318120 FK CONSTRAINT public payment_p2020_01 payment_p2020_01_staff_id_fkey postgres
;3326; 2606 318125 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_customer_id_fkey postgres
;3327; 2606 318130 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_rental_id_fkey postgres
;3328; 2606 318135 FK CONSTRAINT public payment_p2020_02 payment_p2020_02_staff_id_fkey postgres
;3329; 2606 318140 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_customer_id_fkey postgres
;3330; 2606 318145 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_rental_id_fkey postgres
;3331; 2606 318150 FK CONSTRAINT public payment_p2020_03 payment_p2020_03_staff_id_fkey postgres
;3332; 2606 318155 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_customer_id_fkey postgres
;3333; 2606 318160 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_rental_id_fkey postgres
;3334; 2606 318165 FK CONSTRAINT public payment_p2020_04 payment_p2020_04_staff_id_fkey postgres
;3335; 2606 318170 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_customer_id_fkey postgres
;3336; 2606 318175 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_rental_id_fkey postgres
;3337; 2606 318180 FK CONSTRAINT public payment_p2020_05 payment_p2020_05_staff_id_fkey postgres
;3338; 2606 318185 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_customer_id_fkey postgres
;3339; 2606 318190 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_rental_id_fkey postgres
;3340; 2606 318195 FK CONSTRAINT public payment_p2020_06 payment_p2020_06_staff_id_fkey postgres
;3341; 2606 318200 FK CONSTRAINT public rental rental_customer_id_fkey postgres
;3342; 2606 318205 FK CONSTRAINT public rental rental_inventory_id_fkey postgres
;3343; 2606 318210 FK CONSTRAINT public rental rental_staff_id_fkey postgres
;3344; 2606 318215 FK CONSTRAINT public staff staff_address_id_fkey postgres
;3345; 2606 318220 FK CONSTRAINT public staff staff_store_id_fkey postgres
;3346; 2606 318225 FK CONSTRAINT public store store_address_id_fkey postgres

pgcopydb list

pgcopydb list - List database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb list
 tables List all the source tables to copy data from
 sequences List all the source sequences to copy data from
 indexes List all the indexes to create again after copying the data
 depends List all the dependencies to filter-out

pgcopydb list tables

pgcopydb list tables - List all the source tables to copy data from

The command pgcopydb list tables connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
tables to COPY the data from.

pgcopydb list tables: List all the source tables to copy data from
usage: pgcopydb list tables --source ...

 --source Postgres URI to the source database
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped
 --without-pkey List only tables that have no primary key

pgcopydb list sequences

pgcopydb list sequences - List all the source sequences to copy data from

The command pgcopydb list sequences connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
sequences to COPY the data from.

pgcopydb list sequences: List all the source sequences to copy data from
usage: pgcopydb list sequences --source ...

 --source Postgres URI to the source database
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

pgcopydb list indexes

pgcopydb list indexes - List all the indexes to create again after copying the data

The command pgcopydb list indexes connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
indexes to COPY the data from.

pgcopydb list indexes: List all the indexes to create again after copying the data
usage: pgcopydb list indexes --source ... [--schema-name [--table-name]]

 --source Postgres URI to the source database
 --schema-name Name of the schema where to find the table
 --table-name Name of the target table
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

pgcopydb list depends

pgcopydb list depends - List all the dependencies to filter-out

The command pgcopydb list depends connects to the source database and
executes a SQL query using the Postgres catalogs to get a list of all the
objects that depend on excluded objects from the filtering rules.

pgcopydb list depends: List all the dependencies to filter-out
usage: pgcopydb list depends --source ... [--schema-name [--table-name]]

 --source Postgres URI to the source database
 --schema-name Name of the schema where to find the table
 --table-name Name of the target table
 --filter <filename> Use the filters defined in <filename>
 --list-skipped List only tables that are setup to be skipped

Options

The following options are available to pgcopydb dump schema:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--schema-name

	Filter indexes from a given schema only.

	--table-name

	Filter indexes from a given table only (use --schema-name to fully
qualify the table).

	--without-pkey

	List only tables from the source database when they have no primary key
attached to their schema.

	--filter <filename>

	This option allows to skip objects in the list operations. See
Filtering for details about the expected file format and the
filtering options available.

	--list-skipped

	Instead of listing objects that are selected for copy by the filters
installed with the --filter option, list the objects that are going to
be skipped when using the filters.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

Examples

Listing the tables:

$ pgcopydb list tables
14:35:18 13827 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
14:35:19 13827 INFO Fetched information for 56 tables
 OID | Schema Name | Table Name | Est. Row Count | On-disk size
---------+----------------------+----------------------+-----------------+----------------
 17085 | csv | track | 3503 | 544 kB
 17098 | expected | track | 3503 | 544 kB
 17290 | expected | track_full | 3503 | 544 kB
 17276 | public | track_full | 3503 | 544 kB
 17016 | expected | districts | 440 | 72 kB
 17007 | public | districts | 440 | 72 kB
 16998 | csv | blocks | 460 | 48 kB
 17003 | expected | blocks | 460 | 48 kB
 17405 | csv | partial | 7 | 16 kB
 17323 | err | errors | 0 | 16 kB
 16396 | expected | allcols | 0 | 16 kB
 17265 | expected | csv | 0 | 16 kB
 17056 | expected | csv_escape_mode | 0 | 16 kB
 17331 | expected | errors | 0 | 16 kB
 17116 | expected | group | 0 | 16 kB
 17134 | expected | json | 0 | 16 kB
 17074 | expected | matching | 0 | 16 kB
 17201 | expected | nullif | 0 | 16 kB
 17229 | expected | nulls | 0 | 16 kB
 17417 | expected | partial | 0 | 16 kB
 17313 | expected | reg2013 | 0 | 16 kB
 17437 | expected | serial | 0 | 16 kB
 17247 | expected | sexp | 0 | 16 kB
 17378 | expected | test1 | 0 | 16 kB
 17454 | expected | udc | 0 | 16 kB
 17471 | expected | xzero | 0 | 16 kB
 17372 | nsitra | test1 | 0 | 16 kB
 16388 | public | allcols | 0 | 16 kB
 17256 | public | csv | 0 | 16 kB
 17047 | public | csv_escape_mode | 0 | 16 kB
 17107 | public | group | 0 | 16 kB
 17125 | public | json | 0 | 16 kB
 17065 | public | matching | 0 | 16 kB
 17192 | public | nullif | 0 | 16 kB
 17219 | public | nulls | 0 | 16 kB
 17307 | public | reg2013 | 0 | 16 kB
 17428 | public | serial | 0 | 16 kB
 17238 | public | sexp | 0 | 16 kB
 17446 | public | udc | 0 | 16 kB
 17463 | public | xzero | 0 | 16 kB
 17303 | expected | copyhex | 0 | 8192 bytes
 17033 | expected | dateformat | 0 | 8192 bytes
 17366 | expected | fixed | 0 | 8192 bytes
 17041 | expected | jordane | 0 | 8192 bytes
 17173 | expected | missingcol | 0 | 8192 bytes
 17396 | expected | overflow | 0 | 8192 bytes
 17186 | expected | tab_csv | 0 | 8192 bytes
 17213 | expected | temp | 0 | 8192 bytes
 17299 | public | copyhex | 0 | 8192 bytes
 17029 | public | dateformat | 0 | 8192 bytes
 17362 | public | fixed | 0 | 8192 bytes
 17037 | public | jordane | 0 | 8192 bytes
 17164 | public | missingcol | 0 | 8192 bytes
 17387 | public | overflow | 0 | 8192 bytes
 17182 | public | tab_csv | 0 | 8192 bytes
 17210 | public | temp | 0 | 8192 bytes

Listing the indexes:

$ pgcopydb list indexes
14:35:07 13668 INFO Listing indexes in "port=54311 host=localhost dbname=pgloader"
14:35:07 13668 INFO Fetching all indexes in source database
14:35:07 13668 INFO Fetched information for 12 indexes
 OID | Schema | Index Name | conname | Constraint | DDL
---------+------------+----------------------+-----------------+---------------------------+---------------------
 17002 | csv | blocks_ip4r_idx | | | CREATE INDEX blocks_ip4r_idx ON csv.blocks USING gist (iprange)
 17415 | csv | partial_b_idx | | | CREATE INDEX partial_b_idx ON csv.partial USING btree (b)
 17414 | csv | partial_a_key | partial_a_key | UNIQUE (a) | CREATE UNIQUE INDEX partial_a_key ON csv.partial USING btree (a)
 17092 | csv | track_pkey | track_pkey | PRIMARY KEY (trackid) | CREATE UNIQUE INDEX track_pkey ON csv.track USING btree (trackid)
 17329 | err | errors_pkey | errors_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX errors_pkey ON err.errors USING btree (a)
 16394 | public | allcols_pkey | allcols_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX allcols_pkey ON public.allcols USING btree (a)
 17054 | public | csv_escape_mode_pkey | csv_escape_mode_pkey | PRIMARY KEY (id) | CREATE UNIQUE INDEX csv_escape_mode_pkey ON public.csv_escape_mode USING btree (id)
 17199 | public | nullif_pkey | nullif_pkey | PRIMARY KEY (id) | CREATE UNIQUE INDEX nullif_pkey ON public."nullif" USING btree (id)
 17435 | public | serial_pkey | serial_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX serial_pkey ON public.serial USING btree (a)
 17288 | public | track_full_pkey | track_full_pkey | PRIMARY KEY (trackid) | CREATE UNIQUE INDEX track_full_pkey ON public.track_full USING btree (trackid)
 17452 | public | udc_pkey | udc_pkey | PRIMARY KEY (b) | CREATE UNIQUE INDEX udc_pkey ON public.udc USING btree (b)
 17469 | public | xzero_pkey | xzero_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX xzero_pkey ON public.xzero USING btree (a)

pgcopydb copy

pgcopydb copy - Implement the data section of the database copy

This command prefixes the following sub-commands:

pgcopydb copy
 db Copy an entire database from source to target
 schema Copy the database schema from source to target
 data Copy the data section from source to target
 table-data Copy the data from all tables in database from source to target
 blobs Copy the blob data from ther source database to the target
 sequences Copy the current value from all sequences in database from source to target
 indexes Create all the indexes found in the source database in the target
 constraints Create all the constraints found in the source database in the target

Those commands implement a part of the whole database copy operation as
detailed in section pgcopydb copy-db. Only use those commands to
debug a specific part, or because you know that you just want to implement
that step.

Warning

Using the pgcopydb copy-db command is strongly advised.

This mode of operations is useful for debugging and advanced use cases
only.

pgcopydb copy db

The command pgcopydb copy db is an alias for the main command pgcopydb
copy-db, the idea is to refrain from being too pedantic about it. Please
see full documentation coverage at section section pgcopydb copy-db.

pgcopydb copy db: Copy an entire database from source to target
usage: pgcopydb copy db --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --no-acl Prevent restoration of access privileges (grant/revoke commands).
 --no-comments Do not output commands to restore comments
 --skip-large-objects Skip copying large objects (blobs)
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy schema

pgcopydb copy schema - Copy the database schema from source to target

The command pgcopydb copy schema implements the schema only section of
the copy-db steps.

pgcopydb copy schema: Copy the database schema from source to target
usage: pgcopydb copy schema --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --filters <filename> Use the filters defined in <filename>
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy data

pgcopydb copy data - Copy the data section from source to target

The command pgcopydb copy data implements the data section of the
copy-db steps.

pgcopydb copy data: Copy the data section from source to target
usage: pgcopydb copy data --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --drop-if-exists On the target database, clean-up from a previous run first
 --no-owner Do not set ownership of objects to match the original database
 --skip-large-objects Skip copying large objects (blobs)
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

Note

The current command line has both the commands pgcopydb copy
table-data and pgcopydb copy data, which are looking quite similar
but implement different steps. Be careful for now. This will change
later.

The pgcopydb copy data command implements the following steps:

$ pgcopydb copy table-data
$ pgcopydb copy blobs
$ pgcopydb copy indexes
$ pgcopydb copy constraints
$ pgcopydb copy sequences
$ vacuumdb -z

Those steps are actually done concurrently to one another when that’s
possible, in the same way as the main command pgcopydb copy-db would.
The only difference is that the pgcopydb copy-db command also prepares
and finishes the schema parts of the operations (pre-data, then post-data),
which the pgcopydb copy data command ignores.

pgcopydb copy table-data

pgcopydb copy table-data - Copy the data from all tables in database from source to target

The command pgcopydb copy table-data fetches the list of tables from the
source database and runs a COPY TO command on the source database and sends
the result to the target database using a COPY FROM command directly,
avoiding disks entirely.

pgcopydb copy table-data: Copy the data from all tables in database from source to target
usage: pgcopydb copy table-data --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --table-jobs Number of concurrent COPY jobs to run
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot

pgcopydb copy blobs

pgcopydb copy blobs - Copy the blob data from ther source database to the target

The command pgcopydb copy blobs fetches list of large objects (aka
blobs) from the source database and copies their data parts to the target
database. By default the command assumes that the large objects metadata
have already been taken care of, because of the behaviour of
pg_dump --section=pre-data.

pgcopydb copy blobs: Copy the blob data from ther source database to the target
usage: pgcopydb copy blobs --source ... --target ...

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database
 --snapshot Use snapshot obtained with pg_export_snapshot
 --drop-if-exists On the target database, drop and create large objects

pgcopydb copy sequences

pgcopydb copy sequences - Copy the current value from all sequences in database from source to target

The command pgcopydb copy sequences fetches the list of sequences from
the source database, then for each sequence fetches the last_value and
is_called properties the same way pg_dump would on the source database,
and then for each sequence call pg_catalog.setval() on the target
database.

pgcopydb copy sequences: Copy the current value from all sequences in database from source to target
usage: pgcopydb copy sequences --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb copy indexes

pgcopydb copy indexes - Create all the indexes found in the source database in the target

The command pgcopydb copy indexes fetches the list of indexes from the
source database and runs each index CREATE INDEX statement on the target
database. The statements for the index definitions are modified to include
IF NOT EXISTS and allow for skipping indexes that already exist on the
target database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target
usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --index-jobs Number of concurrent CREATE INDEX jobs to run
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source database

pgcopydb copy constraints

pgcopydb copy constraints - Create all the constraints found in the source database in the target

The command pgcopydb copy constraints fetches the list of indexes from
the source database and runs each index ALTER TABLE … ADD CONSTRAINT …
USING INDEX statement on the target database.

The indexes must already exist, and the command will fail if any constraint
is found existing already on the target database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target
usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]

 --source Postgres URI to the source database
 --target Postgres URI to the target database
 --dir Work directory to use
 --restart Allow restarting when temp files exist already
 --resume Allow resuming operations after a failure
 --not-consistent Allow taking a new snapshot on the source data

Description

These commands allow implementing a specific step of the pgcopydb operations
at a time. It’s useful mainly for debugging purposes, though some advanced
and creative usage can be made from the commands.

The target schema is not created, so it needs to have been taken care of
first. It is possible to use the commands pgcopydb dump schema and
then pgcopydb restore pre-data to prepare your target database.

To implement the same operations as a pgcopydb copy-db command would,
use the following recipe:

$ export PGCOPYDB_SOURCE_PGURI="postgres://user@source/dbname"
$ export PGCOPYDB_TARGET_PGURI="postgres://user@target/dbname"

$ pgcopydb dump schema
$ pgcopydb restore pre-data --resume --not-consistent
$ pgcopydb copy table-data --resume --not-consistent
$ pgcopydb copy sequences --resume --not-consistent
$ pgcopydb copy indexes --resume --not-consistent
$ pgcopydb copy constraints --resume --not-consistent
$ vacuumdb -z
$ pgcopydb restore post-data --resume --not-consistent

The main pgcopydb copy-db is still better at concurrency than doing
those steps manually, as it will create the indexes for any given table as
soon as the table-data section is finished, without having to wait until the
last table-data has been copied over. Same applies to constraints, and then
vacuum analyze.

Options

The following options are available to pgcopydb copy sub-commands:

	--source

	Connection string to the source Postgres instance. See the Postgres
documentation for connection strings [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING] for the details. In short both
the quoted form "host=... dbname=..." and the URI form
postgres://user@host:5432/dbname are supported.

	--target

	Connection string to the target Postgres instance.

	--dir

	During its normal operations pgcopydb creates a lot of temporary files to
track sub-processes progress. Temporary files are created in the directory
location given by this option, or defaults to
${TMPDIR}/pgcopydb when the environment variable is set, or
then to /tmp/pgcopydb.

	--table-jobs

	How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be
running at the same time that this limit while the CREATE INDEX operations
are in progress, though then the processes are only waiting for the target
Postgres instance to do all the work.

	--index-jobs

	How many indexes can be built in parallel, globally. A good option is to
set this option to the count of CPU cores that are available on the
Postgres target system, minus some cores that are going to be used for
handling the COPY operations.

	--skip-large-objects

	Skip copying large objects, also known as blobs, when copying the data
from the source database to the target database.

	--restart

	When running the pgcopydb command again, if the work directory already
contains information from a previous run, then the command refuses to
proceed and delete information that might be used for diagnostics and
forensics.

In that case, the --restart option can be used to allow pgcopydb to
delete traces from a previous run.

	--resume

	When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is
possible to resume the database migration.

When resuming activity from a previous run, table data that was fully
copied over to the target server is not sent again. Table data that was
interrupted during the COPY has to be started from scratch even when using
--resume: the COPY command in Postgres is transactional and was rolled
back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a
--resume run only if known to have run through to completion on the
previous one.

Finally, using --resume requires the use of --not-consistent.

	--not-consistent

	In order to be consistent, pgcopydb exports a Postgres snapshot by calling
the pg_export_snapshot() [https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE] function on the source database server. The
snapshot is then re-used in all the connections to the source database
server by using the SET TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string
identifying the snapshot. This string must be passed (outside the
database) to clients that want to import the snapshot. The snapshot is
available for import only until the end of the transaction that exported
it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous
run, it is possible to resume operations, but the snapshot that was
exported does not exists anymore. The pgcopydb command can only resume
operations with a new snapshot, and thus can not ensure consistency of the
whole data set, because each run is now using their own snapshot.

	--snapshot

	Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already
exported snapshot.

Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is
ommitted from the command line, then this environment variable is used.

PGCOPYDB_TARGET_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel.
When --table-jobs is ommitted from the command line, then this
environment variable is used.

PGCOPYDB_TARGET_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in
parallel. When --index-jobs is ommitted from the command line, then
this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean)
then pgcopydb uses the pg_restore options --clean --if-exists when
creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

TMPDIR

The pgcopydb command creates all its work files and directories in
${TMPDIR}/pgcopydb, and defaults to /tmp/pgcopydb.

Examples

Let’s export the Postgres databases connection strings to make it easy to
re-use them all along:

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"

Now, first dump the schema:

$ pgcopydb dump schema
15:24:24 75511 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:24 75511 WARN Directory "/tmp/pgcopydb" already exists: removing it entirely
15:24:24 75511 INFO Dumping database from "port=54311 host=localhost dbname=pgloader"
15:24:24 75511 INFO Dumping database into directory "/tmp/pgcopydb"
15:24:24 75511 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
15:24:24 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/pgcopydb/schema/pre.dump 'port=54311 host=localhost dbname=pgloader'
15:24:25 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/pgcopydb/schema/post.dump 'port=54311 host=localhost dbname=pgloader'

Now restore the pre-data schema on the target database, cleaning up the
already existing objects if any, which allows running this test scenario
again and again. It might not be what you want to do in your production
target instance though!

PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore pre-data --no-owner
15:24:29 75591 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:29 75591 INFO Restoring database from "/tmp/pgcopydb"
15:24:29 75591 INFO Restoring database into "port=54311 dbname=plop"
15:24:29 75591 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:29 75591 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --clean --if-exists --no-owner /tmp/pgcopydb/schema/pre.dump

Then copy the data over:

$ pgcopydb copy table-data --resume --not-consistent
15:24:36 75688 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:36 75688 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:36 75688 INFO STEP 3: copy data from source to target in sub-processes
15:24:36 75688 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO Fetched information for 56 tables
...
 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 1s140 4
 CREATE INDEX (cumulative) target 0ms 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 2s143 4 + 4
 --- ---------- ---------- ------------

And now create the indexes on the target database, using the index
definitions from the source database:

$ pgcopydb copy indexes --resume --not-consistent
15:24:40 75918 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:40 75918 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:40 75918 INFO STEP 4: create indexes in parallel
15:24:40 75918 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO Fetched information for 56 tables
15:24:40 75930 INFO Creating 2 indexes for table "csv"."partial"
15:24:40 75922 INFO Creating 1 index for table "csv"."track"
15:24:40 75931 INFO Creating 1 index for table "err"."errors"
15:24:40 75928 INFO Creating 1 index for table "csv"."blocks"
15:24:40 75925 INFO Creating 1 index for table "public"."track_full"
15:24:40 76037 INFO CREATE INDEX IF NOT EXISTS partial_b_idx ON csv.partial USING btree (b);
15:24:40 76036 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_pkey ON csv.track USING btree (trackid);
15:24:40 76035 INFO CREATE UNIQUE INDEX IF NOT EXISTS partial_a_key ON csv.partial USING btree (a);
15:24:40 76038 INFO CREATE UNIQUE INDEX IF NOT EXISTS errors_pkey ON err.errors USING btree (a);
15:24:40 75987 INFO Creating 1 index for table "public"."xzero"
15:24:40 75969 INFO Creating 1 index for table "public"."csv_escape_mode"
15:24:40 75985 INFO Creating 1 index for table "public"."udc"
15:24:40 75965 INFO Creating 1 index for table "public"."allcols"
15:24:40 75981 INFO Creating 1 index for table "public"."serial"
15:24:40 76039 INFO CREATE INDEX IF NOT EXISTS blocks_ip4r_idx ON csv.blocks USING gist (iprange);
15:24:40 76040 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_full_pkey ON public.track_full USING btree (trackid);
15:24:40 75975 INFO Creating 1 index for table "public"."nullif"
15:24:40 76046 INFO CREATE UNIQUE INDEX IF NOT EXISTS xzero_pkey ON public.xzero USING btree (a);
15:24:40 76048 INFO CREATE UNIQUE INDEX IF NOT EXISTS udc_pkey ON public.udc USING btree (b);
15:24:40 76047 INFO CREATE UNIQUE INDEX IF NOT EXISTS csv_escape_mode_pkey ON public.csv_escape_mode USING btree (id);
15:24:40 76049 INFO CREATE UNIQUE INDEX IF NOT EXISTS allcols_pkey ON public.allcols USING btree (a);
15:24:40 76052 INFO CREATE UNIQUE INDEX IF NOT EXISTS nullif_pkey ON public."nullif" USING btree (id);
15:24:40 76050 INFO CREATE UNIQUE INDEX IF NOT EXISTS serial_pkey ON public.serial USING btree (a);

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 619ms 4
 CREATE INDEX (cumulative) target 1s023 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 400ms 4 + 4
 --- ---------- ---------- ------------

Now re-create the constraints (primary key, unique constraints) from the
source database schema into the target database:

$ pgcopydb copy constraints --resume --not-consistent
15:24:43 76095 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:43 76095 INFO [TARGET] Copying database into "port=54311 dbname=plop"
15:24:43 76095 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:43 76095 INFO STEP 4: create constraints
15:24:43 76095 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:43 76095 INFO Fetched information for 56 tables
15:24:43 76099 INFO ALTER TABLE "csv"."track" ADD CONSTRAINT "track_pkey" PRIMARY KEY USING INDEX "track_pkey";
15:24:43 76107 INFO ALTER TABLE "csv"."partial" ADD CONSTRAINT "partial_a_key" UNIQUE USING INDEX "partial_a_key";
15:24:43 76102 INFO ALTER TABLE "public"."track_full" ADD CONSTRAINT "track_full_pkey" PRIMARY KEY USING INDEX "track_full_pkey";
15:24:43 76142 INFO ALTER TABLE "public"."allcols" ADD CONSTRAINT "allcols_pkey" PRIMARY KEY USING INDEX "allcols_pkey";
15:24:43 76157 INFO ALTER TABLE "public"."serial" ADD CONSTRAINT "serial_pkey" PRIMARY KEY USING INDEX "serial_pkey";
15:24:43 76161 INFO ALTER TABLE "public"."xzero" ADD CONSTRAINT "xzero_pkey" PRIMARY KEY USING INDEX "xzero_pkey";
15:24:43 76146 INFO ALTER TABLE "public"."csv_escape_mode" ADD CONSTRAINT "csv_escape_mode_pkey" PRIMARY KEY USING INDEX "csv_escape_mode_pkey";
15:24:43 76154 INFO ALTER TABLE "public"."nullif" ADD CONSTRAINT "nullif_pkey" PRIMARY KEY USING INDEX "nullif_pkey";
15:24:43 76159 INFO ALTER TABLE "public"."udc" ADD CONSTRAINT "udc_pkey" PRIMARY KEY USING INDEX "udc_pkey";
15:24:43 76108 INFO ALTER TABLE "err"."errors" ADD CONSTRAINT "errors_pkey" PRIMARY KEY USING INDEX "errors_pkey";

 Step Connection Duration Concurrency
 --- ---------- ---------- ------------
 Dump Schema source 0ms 1
 Prepare Schema target 0ms 1
 COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 0ms 4 + 4
 COPY (cumulative) both 605ms 4
 CREATE INDEX (cumulative) target 1s023 4
 Finalize Schema target 0ms 1
 --- ---------- ---------- ------------
 Total Wall Clock Duration both 415ms 4 + 4
 --- ---------- ---------- ------------

The next step is a VACUUM ANALYZE on each table that’s been just filled-in
with the data, and for that we can just use the vacuumdb [https://www.postgresql.org/docs/current/app-vacuumdb.html] command from
Postgres:

$ vacuumdb --analyze --dbname "$PGCOPYDB_TARGET_PGURI" --jobs 4
vacuumdb: vacuuming database "plop"

Finally we can restore the post-data section of the schema:

$ pgcopydb restore post-data --resume --not-consistent
15:24:50 76328 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"
15:24:50 76328 INFO Restoring database from "/tmp/pgcopydb"
15:24:50 76328 INFO Restoring database into "port=54311 dbname=plop"
15:24:50 76328 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:50 76328 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --use-list /tmp/pgcopydb/schema/post.list /tmp/pgcopydb/schema/post.dump

pgcopydb configuration

Manual page for the configuration of pgcopydb. The pgcopydb command
accepts sub-commands and command line options, see the manual for those
commands for details. The only setup that pgcopydb commands accept is
the filtering.

Filtering

Filtering allows to skip some object definitions and data when copying from
the source to the target database. The pgcopydb commands that accept the
option --filter (or --filters) expect an existing filename as the
option argument. The given filename is read in the INI file format, but only
uses sections and option keys. Option values are not used.

Here is an inclusion based filter configuration example:

 1[include-only-table]
 2public.allcols
 3public.csv
 4public.serial
 5public.xzero
 6
 7[exclude-index]
 8public.foo_gin_tsvector
 9
10[exclude-table-data]
11public.csv

Here is an exclusion based filter configuration example:

 1[exclude-schema]
 2foo
 3bar
 4expected
 5
 6[exclude-table]
 7"schema"."name"
 8schema.othername
 9err.errors
10public.serial
11
12[exclude-index]
13schema.indexname
14
15[exclude-table-data]
16public.bar
17nsitra.test1

Filtering can be done with pgcopydb by using the following rules, which are
also the name of the sections of the INI file.

include-only-tables

This section allows listing the exclusive list of the source tables to copy
to the target database. No other table will be processed by pgcopydb.

Each line in that section should be a schema-qualified table name. Postgres
identifier quoting rules [https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS] can be used to avoid ambiguity.

When the section include-only-tables is used in the filtering
configuration then the sections exclude-schema and exclude-table are
disallowed. We would not know how to handle tables that exist on the source
database and are not part of any filter.

exclude-schema

This section allows adding schemas (Postgres namespaces) to the exclusion
filters. All the tables that belong to any listed schema in this section are
going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is
used.

exclude-table

This section allows to add a list of qualified table names to the exclusion
filters. All the tables that are listed in the exclude-table section are
going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is
used.

exclude-index

This section allows to add a list of qualified index names to the exclusion
filters. It is then possible for pgcopydb to operate on a table and skip a
single index definition that belong to a table that is still processed.

exclude-table-data

This section allows to skip copying the data from a list of qualified table
names. The schema, index, constraints, etc of the table are still copied
over.

Reviewing and Debugging the filters

Filtering a pg_restore archive file is done through rewriting the
archive catalog obtained with pg_restore --list. That’s a little hackish
at times, and we also have to deal with dependencies in pgcopydb itself.

The following commands can be used to explore a set of filtering rules:

	pgcopydb list depends

	pgcopydb restore parse-list

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pgcopydb’s documentation!

 		
 Introduction to pgcopydb

 		
 How to copy a Postgres database

 		
 Notes about concurrency

 		
 Design Considerations

 		
 Bypass intermediate files for the TABLE DATA

 		
 For each table, build all indexes concurrently

 		
 Installing pgcopydb

 		
 debian packages

 		
 RPM packages

 		
 Docker Images

 		
 Build from sources

 		
 Manual Pages

 		
 pgcopydb

 		
 Synopsis

 		
 Description

 		
 Help

 		
 Version

 		
 pgcopydb copy-db

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb dump

 		
 pgcopydb dump schema

 		
 pgcopydb dump pre-data

 		
 pgcopydb dump post-data

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb restore

 		
 pgcopydb restore schema

 		
 pgcopydb restore pre-data

 		
 pgcopydb restore post-data

 		
 pgcopydb restore parse-list

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb list

 		
 pgcopydb list tables

 		
 pgcopydb list sequences

 		
 pgcopydb list indexes

 		
 pgcopydb list depends

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb copy

 		
 pgcopydb copy db

 		
 pgcopydb copy schema

 		
 pgcopydb copy data

 		
 pgcopydb copy table-data

 		
 pgcopydb copy blobs

 		
 pgcopydb copy sequences

 		
 pgcopydb copy indexes

 		
 pgcopydb copy constraints

 		
 Description

 		
 Options

 		
 Environment

 		
 Examples

 		
 pgcopydb configuration

 		
 Filtering

 		
 Reviewing and Debugging the filters

_static/file.png

_static/minus.png

_static/plus.png

