pgcopydb
Release 0.9

Dimitri Fontaine

Sep 30, 2022

DOCUMENTATION TABLE OF CONTENTS

Introduction to pgcopydb 3
1.1 Feature MatriX e e e 3
1.2 pgcopydb uses pg_dump and pg_restoreo ..o e e e e e e e e 4
1.3 Change Data Capture, or fork and follow L o . 4
Design Considerations 5
2.1 Bypass intermediate files for the TABLEDATA 5
2.2 Notes abOUt CONCUITENCY . . « « v v v v v v e e et e e e e e e e e e e e e e e e e e 5
2.3 For each table, build all indexes concurrently 7
2.4 Same-table CONCUITENCY . .+ . v ¢ v v v v v v e 8
Installing pgcopydb 11
3.1 debianpackages e e e e e e e e e 11
3.2 RPMpackages o o i e e e e e e e e e e e e 11
33 DockerImages e 11
34 Build fromsourceso e e e e e e e e e e e 12
Manual Pages 13
4.1 pgeopydb . ..o e e 13
42 pgeopydbceloneo e e e e e e e 15
4.3 pgeopydb follow L e e e 25
4.4 pgeopydb snapshot L e e e e e e e e e 31
45 pgeopydb COPY . . . v i e e e e e e e e e 32
4.6 pgeopydbdump ... e e e e e e e e 41
47 pgeopydb Iestore L e e e e e e e e e e e e e e e e 44
4.8 pgeopydb list e e e 50
4.9 pgeopydb Stream L e e e e e e e e e e e e e e e e e e e 72
4.10 pgeopydb configuration L. e e e e e e e e 81
Indices and tables 83

pgcopydb, Release 0.9

The pgcopydb project is an Open Source Software project. The development happens at https://github.com/dimitri/
pgcopydb and is public: everyone is welcome to participate by opening issues, pull requests, giving feedback, etc.

Remember that the first steps are to actually play with the pgcopydb command, then read the entire available docu-
mentation (after all, I took the time to write it), and then to address the community in a kind and polite way — the same
way you would expect people to use when addressing you.

DOCUMENTATION TABLE OF CONTENTS 1

https://github.com/dimitri/pgcopydb
https://github.com/dimitri/pgcopydb
https://github.com/dimitri/pgcopydb

pgcopydb, Release 0.9

2 DOCUMENTATION TABLE OF CONTENTS

CHAPTER
ONE

INTRODUCTION TO PGCOPYDB

pgcopydb is a tool that automates copying a PostgreSQL database to another server. Main use case for pgcopydb is
migration to a new Postgres system, either for new hardware, new architecture, or new Postgres major version.

The idea would be to run pg_dump -jN | pg_restore -jN between two running Postgres servers. To make a copy
of a database to another server as quickly as possible, one would like to use the parallel options of pg_dump and still
be able to stream the data to as many pg_restore jobs. Unfortunately, that approach can’t be implemented by using
pg_dump and pg_restore directly, see Bypass intermediate files for the TABLE DATA.

When using pgcopydb it is possible to achieve both concurrency and streaming with this simple command line:

$ export PGCOPYDB_SOURCE_PGURI="postgres://user@source.host.dev/dbname"
$ export PGCOPYDB_TARGET_PGURI="postgres://role@target.host.dev/dbname"

$ pgcopydb clone --table-jobs 4 --index-jobs 4

See the manual page for pgcopydb clone for detailed information about how the command is implemented, and many
other supported options.

1.1 Feature Matrix

Here is a comparison of the features available when using pg_dump and pg_restore directly, and when using pgcopydb
to handle the database copying.

Feature pgcopydb | pg_dump ; pg_restore
Single-command operation v

Snapshot consistency v v

Ability to resume partial run | v

Advanced filtering v v

Tables concurrency v v

Same-table concurrency v

Index concurrency v v

Constraint index concurrency | v/

Schema v v

Large Objects v v

Vacuum Analyze v

Copy Freeze v

Roles v (needs pg_dumpall)
Tablespaces (needs pg_dumpall)
Follow changes v

See documentation about pgcopydb pgcopydb configuration for its Advanced filtering capabilities.

R T I S

pgcopydb, Release 0.9

1.2 pgcopydb uses pg_dump and pg_restore

The implementation of pgcopydb actually calls into the pg_dump and pg_restore binaries to handle a large part of the
work, such as the pre-data and post-data sections. See pg_dump docs for more information about the three sections
supported.

After using pg_dump to obtain the pre-data and the post-data parts, then pgcopydb restore the pre-data parts to the
target Postgres instance using pg_restore.

Then pgcopydb uses SQL commands and the COPY streaming protocol to migrate the table contents, the large objects
data, and to VACUUM ANALYZE tables as soon as the data is available on the target instance.

Then pgcopydb uses SQL commands to build the indexes on the target Postgres instance, as detailed in the design doc
For each table, build all indexes concurrently. This allows to include constraint indexes such as Primary Keys in the
list of indexes built at the same time.

1.3 Change Data Capture, or fork and follow

It is also possible with pgcopydb to implement Change Data Capture and replay data modifications happening on
the source database to the target database. See the pgcopydb follow command and the pgcopydb clone --follow
command line option at pgcopydb clone in the manual.

The simplest possible implementation of online migration with pgcopydb, where changes being made to the source
Postgres instance database are replayed on the target system, looks like the following:

$ pgcopydb clone --follow &

later when the application is ready to make the switch
$ pgcopydb stream sentinel set endpos --current

later when the migration is finished, clean-up both source and target
$ pgcopydb stream cleanup

4 Chapter 1. Introduction to pgcopydb

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/sql-copy.html

CHAPTER
TWO

DESIGN CONSIDERATIONS

The reason why pgcopydb has been developed is mostly to allow two aspects that are not possible to achieve directly
with pg_dump and pg_restore, and that requires just enough fiddling around that not many scripts have been made
available to automate around.

2.1 Bypass intermediate files for the TABLE DATA

First aspect is that for pg_dump and pg_restore to implement concurrency they need to write to an intermediate file
first.

The docs for pg_dump say the following about the --jobs parameter:

You can only use this option with the directory output format because this is the only output format where
multiple processes can write their data at the same time.

The docs for pg_restore say the following about the --jobs parameter:

Only the custom and directory archive formats are supported with this option. The input must be a regular
file or directory (not, for example, a pipe or standard input).

So the first idea with pgcopydb is to provide the --jobs concurrency and bypass intermediate files (and directories)
altogether, at least as far as the actual TABLE DATA set is concerned.

The trick to achieve that is that pgcopydb must be able to connect to the source database during the whole operation,
when pg_restore may be used from an export on-disk, without having to still be able to connect to the source database.
In the context of pgcopydb requiring access to the source database is fine. In the context of pg_restore, it would not
be acceptable.

2.2 Notes about concurrency

The pgcopydb too implements many operations concurrently to one another, by ways of using the fork () system call.
This means that pgcopydb creates sub-processes that each handle a part of the work.

The process tree then looks like the following:
* pgcopydb clone —follow —table-jobs 4 —index-jobs 4
— pgcopydb clone worker
% pgcopydb copy supervisor (--table-jobs 4)
1. pgcopydb copy worker
2. pgcopydb copy worker

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html

pgcopydb, Release 0.9

3. pgcopydb copy worker

4. pgcopydb copy worker
% pgcopydb blob worker
1. pgcopydb index/constraints worker (--index-jobs 4)
2. pgcopydb index/constraints worker (--index-jobs 4)
3. pgcopydb index/constraints worker (--index-jobs 4)
4. pgcopydb index/constraints worker (--index-jobs 4)
1. pgcopydb vacuum analyze worker (--table-jobs 4)
2. pgcopydb vacuum analyze worker (--table-jobs 4)
3. pgcopydb vacuum analyze worker (--table-jobs 4)
4. pgcopydb vacuum analyze worker (--table-jobs 4)
% pgcopydb sequences reset worker

— pgcopydb follow worker

% pgcopydb stream receive
% pgcopydb stream transform
% pgcopydb stream catchup

We see that when using pgcopydb clone --follow --table-jobs 4 --index-jobs 4 then pgcopydb creates
20 sub-processes, including one transient sub-process each time a JSON file is to be converted to a SQL file for replay.

The 20 total is counted from:

* 1 clone worker + 1 copy supervisor + 4 copy workers + 1 blob worker + 4 index workers + 4 vacuum workers +
1 sequence reset worker

thats 1+ 1+4+1+4+4+1=16
* 1 follow worker + 1 stream receive + 1 stream transform + 1 stream catchup
thats 1+ 1+1+1=4
e that’s 16 + 4 = 20 total
Here is a description of the process tree:

* When starting with the TABLE DATA copying step, then pgcopydb creates as many sub-processes as specified
by the --table-jobs command line option (or the environment variable PGCOPYDB_TABLE_JOBS).

* A single sub-process is created by pgcopydb to copy the Postgres Large Objects (BLOBs) found on the source
database to the target database.

* To drive the index and constraint build on the target database, pgcopydb creates as many sub-processes as spec-
ified by the --index-jobs command line option (or the environment variable PGCOPYDB_INDEX_JOBS).

It is possible with Postgres to create several indexes for the same table in parallel, for that, the client just needs
to open a separate database connection for each index and run each CREATE INDEX command in its own
connection, at the same time. In pgcopydb this is implemented by running one sub-process per index to create.

The --index-jobs option is global for the whole operation, so that it’s easier to setup to the count of available
CPU cores on the target Postgres instance. Usually, a given CREATE INDEX command uses 100% of a single
core.

6 Chapter 2. Design Considerations

pgcopydb, Release 0.9

¢ To drive the VACUUM ANALYZE workload on the target database pgcopydb creates as many sub-processes as
specified by the --table-jobs command line option.

* To reset sequences in parallel to COPYing the table data, pgcopydb creates a single dedicated sub-process.

e When using the --follow option then another sub-process leader is created to handle the three Change Data
Capture processes.

— One process implements pgcopydb stream receive to fetch changes in the JSON format and pre-fetch them
in JSON files.

— As soon as JSON file is completed, the pgcopydb stream transform worker transforms the JSON file into
SQL, as if by calling the command pgcopydb stream transform.

— Another process implements pgcopydb stream catchup to apply SQL changes to the target Postgres instance.
This process loops over querying the pgcopydb sentinel table until the apply mode has been enabled, and
then loops over the SQL files and run the queries from them.

2.3 For each table, build all indexes concurrently

pgcopydb takes the extra step and makes sure to create all your indexes in parallel to one-another, going the extra mile
when it comes to indexes that are associated with a constraint.

Postgres introduced the configuration parameter synchronize_seqscans in version 8.3, eons ago. It is on by default and
allows the following behavior:

This allows sequential scans of large tables to synchronize with each other, so that concurrent scans read
the same block at about the same time and hence share the I/O workload.

The other aspect that pg_dump and pg_restore are not very smart about is how they deal with the indexes that are
used to support constraints, in particular unique constraints and primary keys.

Those indexes are exported using the ALTER TABLE command directly. This is fine because the command creates both
the constraint and the underlying index, so the schema in the end is found as expected.

That said, those ALTER TABLE ... ADD CONSTRAINT commands require a level of locking that prevents any concur-
rency. As we can read on the docs for ALTER TABLE:

Although most forms of ADD table_constraint require an ACCESS EXCLUSIVE lock, ADD FOREIGN
KEY requires only a SHARE ROW EXCLUSIVE lock. Note that ADD FOREIGN KEY also acquires a
SHARE ROW EXCLUSIVE lock on the referenced table, in addition to the lock on the table on which the
constraint is declared.

The trick is then to first issue a CREATE UNIQUE INDEX statement and when the index has been built then issue a
second command in the form of ALTER TABLE ... ADD CONSTRAINT ... PRIMARY KEY USING INDEX ..., as
in the following example taken from the logs of actually running pgcopydb:

21:52:06 68898 INFO COPY "demo"."tracking";

21:52:06 68899 INFO COPY "demo"."client";

21:52:06 68899 INFO Creating 2 indexes for table "demo"."client"

21:52:06 68906 INFO CREATE UNIQUE INDEX client_pkey ON demo.client USING btree (client);

21:52:06 68907 INFO CREATE UNIQUE INDEX client_pid_key ON demo.client USING btree (pid);

21:52:06 68898 INFO Creating 1 indexes for table "demo"."tracking"

21:52:06 68908 INFO CREATE UNIQUE INDEX tracking_pkey ON demo.tracking USING btree (client, ts);

21:52:06 68907 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pid_key" UNIQUE USING INDEX "client_pid_key";
21:52:06 68906 INFO ALTER TABLE "demo"."client" ADD CONSTRAINT "client_pkey" PRIMARY KEY USING INDEX "client_pkey";
21:52:06 68908 INFO ALTER TABLE "demo"."tracking" ADD CONSTRAINT "tracking_pkey" PRIMARY KEY USING INDEX "tracking_pkey";

This trick is worth a lot of performance gains on its own, as has been discovered and experienced and appreciated by
pgloader users already.

2.3. For each table, build all indexes concurrently 7

https://postgresqlco.nf/doc/en/param/synchronize_seqscans/
https://www.postgresql.org/docs/current/sql-altertable.html
https://github.com/dimitri/pgloader

pgcopydb, Release 0.9

2.4 Same-table Concurrency

In some database schema design, it happens that most of the database size on-disk is to be found in a single giant table,
or a short list of giant tables. When this happens, the concurrency model that is implemented with --table-jobs still
allocates a single process to COPY all the data from the source table.

Same-table concurrency allows pgcopydb to use more than once process at the same time to process a single source
table. The data is then logically partitionned (on the fly) and split between processes:

¢ To fetch the data from the source database, the COPY processes then use SELECT queries like in the following
example:

COPY (SELECT * FROM source.table WHERE id BETWEEN 1 AND 123456)
COPY (SELECT * FROM source.table WHERE id BETWEEN 123457 AND 234567)
COPY (SELECT * FROM source.table WHERE id BETWEEN 234568 AND 345678)

This is only possible when the source.table has at least one column of an integer type (int2, int4, and int8
are supported) and with a UNIQUE or PRIMARY KEY constraint. We must make sure that any given row is
selected only once overall to avoid introducing duplicates on the target database.

* To decide if a table COPY processing should be split, the command line option split-tables-larger-than
is used, or the environment variable PGCOPYDB_SPLIT_TABLES_LARGER_THAN.

The expected value is either a plain number of bytes, or a pretty-printed number of bytes such as 250 GB.

When using this option, then tables that have at least this amount of data and also a candidate key for the COPY
partitioning are then distributed among a number of COPY processes.

The number of COPY processes is computed by dividing the table size by the threshold set with the split option.
For example, if the threshold is 250 GB then a 400 GB table is going to be distributed among 2 COPY processes.

The command pgcopydb list table-parts may be used to list the COPY partitioning that pgcopydb computes given
a source table and a threshold.

2.4.1 Significant differences when using same-table COPY concurrency
When same-table concurrency happens for a source table, some operations are not implemented as they would have
been without same-table concurrency. Specifically:

* TRUNCATE and COPY FREEZE Postgres optimisation

When using a single COPY process, it’s then possible to TRUNCATE the target table in the same transaction as
the COPY command, as in the following syntethic example:

BEGIN;

TRUNCATE table ONLY;

COPY table FROM stdin WITH (FREEZE);
COMMIT

This technique allows Postgres to implement several optimisations, doing work during the COPY that would
otherwise need to happen later when executing the first queries on the table.

When using same-table concurrency then we have several transactions happening concurrently on the target
system that are copying data from the source table. This means that we have to TRUNCATE separately and the
FREEZE option can not be used.

e CREATE INDEX and VACUUM

Even when same-table COPY concurrency is enabled, creating the indexes on the target system only happens
after the whole data set has been copied over. This means that only the when the last process is done with the
COPYing then this process will take care of the the indexes and the vacuum analyze operation.

8 Chapter 2. Design Considerations

pgcopydb, Release 0.9

2.4.2 Same-table COPY concurrency performance limitations
Finally, it might be that same-table concurrency is not effective at all in some use cases. Here is a list of limitations to
have in mind when selecting to use this feature:

* Network Bandwidth

The most common performance bottleneck relevant to database migrations is the network bandwidth. When the
bandwidth is saturated (used in full) then same-table concurrency will provide no performance benefits.

* Disks IOPS

The second most command performance bottleneck relevant to database migrations is disks IOPS and, in the
Cloud, burst capacity. When the disk bandwidth is used in full, then same-table concurrency will provide no
performance benefits.

Source database system uses read IOPS, target database system uses both read and write IOPS (copying the data
writes to disk, creating the indexes both read table data from disk and then write index data to disk).

* On-disk data organisation

When using a single COPY process, the target system may fill-in the Postgres table in a clustered way, using each
disk page in full before opening the next one, in a sequential fashion.

When using same-table COPY concurrency, then the target Postgres system needs to handle concurrent writes
to the same table, resulting in a possibly less effective disk usage.

How that may impact your application performance is to be tested.
* synchronize_seqscans

Postgres implemented this option back in version 8.3. The option is now documented in the Version and Platform
Compatibility section.

The documentation reads:

This allows sequential scans of large tables to synchronize with each other, so that concurrent scans
read the same block at about the same time and hence share the I/O workload.

The impact on performance when having concurrent COPY processes reading the same source table at the same
time is to be assessed. At the moment there is no option in pgcopydb to SET synchronize_segscans TO off when
using same-table COPY concurrency.

Use your usual Postgres configuration editing for testing.

2.4. Same-table Concurrency 9

https://www.postgresql.org/docs/current/runtime-config-compatible.html
https://www.postgresql.org/docs/current/runtime-config-compatible.html

pgcopydb, Release 0.9

10 Chapter 2. Design Considerations

CHAPTER
THREE

INSTALLING PGCOPYDB

Several distributions are available for pgcopydb.

3.1 debian packages

Binary packages for debian and derivatives (ubuntu) are available from apt.postgresql.org repository, install by follow-
ing the linked documentation and then:

‘$ sudo apt-get install pgcopydb

3.2 RPM packages

The Postgres community repository for RPM packages is yum.postgresql.org and does not include binary packages for
pgcopydb at this time.

3.3 Docker Images

Docker images are maintained for each tagged release at dockerhub, and also built from the CI/CD integration on
GitHub at each commit to the main branch.

The DockerHub dimitri/pgcopydb repository is where the tagged releases are made available. The image uses the
Postgres version currently in debian stable.

To use this docker image:

$ docker run --rm -it dimitri/pgcopydb:v0.9 pgcopydb --version

Or you can use the CI/CD integration that publishes packages from the main branch to the GitHub docker repository:

$ docker pull ghcr.io/dimitri/pgcopydb:latest
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --version
$ docker run --rm -it ghcr.io/dimitri/pgcopydb:latest pgcopydb --help

11

https://wiki.postgresql.org/wiki/Apt
https://yum.postgresql.org
https://hub.docker.com/r/dimitri/pgcopydb#!

pgcopydb, Release 0.9

3.4 Build from sources

Building from source requires a list of build-dependencies that’s comparable to that of Postgres itself. The pgcopydb
source code is written in C and the build process uses a GNU Makefile.

See our main Dockerfile for a complete recipe to build pgcopydb when using a debian environment.

Then the build process is pretty simple, in its simplest form you can just use make clean install, if you want to be
more fancy consider also:

$ make -s clean
$ make -s -jl12 install

12 Chapter 3. Installing pgcopydb

https://github.com/dimitri/pgcopydb/blob/main/Dockerfile

CHAPTER
FOUR

MANUAL PAGES

The pgcopydb command provides several sub-commands. Each of them have their own manual page.
4.1 pgcopydb
pgcopydb - copy an entire Postgres database from source to target

4.1.1 Synopsis

pgcopydb provides the following commands:

pgcopydb
clone Clone an entire database from source to target
fork Clone an entire database from source to target

follow Replay changes from the source database to the target database
snapshot Create and exports a snapshot on the source database

+ copy Implement the data section of the database copy
+ dump Dump database objects from a Postgres instance
+ restore Restore database objects into a Postgres instance
+ list List database objects from a Postgres instance
+ stream Stream changes from the source database
help print help message

version print pgcopydb version

4.1.2 Description

The pgcopydb command implements a full migration of an entire Postgres database from a source instance to a target
instance. Both the Postgres instances must be available for the entire duration of the command.

The pgcopydb command also implements a full Logical Decoding client for the wal2json logical decoding plugin,
allowing Change Data Capture to replay data changes (DML) happening on the source database after the base copy
snapshot.

13

https://www.postgresql.org/docs/current/logicaldecoding.html
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.1.3 pgcopydb help

The pgcopydb help command lists all the supported sub-commands:

pgcopydb pgcopydb help

pgcopydb
clone
fork
follow
copy-db
snapshot

+ copy

+ dump

+ restore

+ list

+ stream

help

version

pgcopydb copy
db

roles
schema
data

Clone an entire database from source to target

Clone an entire database from source to target
Replay changes from the source database to the target database
Copy an entire database from source to target

Create and exports a snapshot on the source database
Implement the data section of the database copy

Dump database objects from a Postgres instance
Restore database objects into a Postgres instance
List database objects from a Postgres instance
Stream changes from the source database

print help message

print pgcopydb version

Copy an entire database from source to target

Copy the roles from the source instance to the target instance
Copy the database schema from source to target

Copy the data section from source to target

table-data Copy the data from all tables in database from source to target

blobs Copy the blob data from ther source database to the target
sequences Copy the current value from all sequences in database from source to target
indexes Create all the indexes found in the source database in the target

constraints Create all the constraints found in the source database in the target

pgcopydb dump

schema
pre-data

Dump source database schema as custom files in work directory
Dump source database pre-data schema as custom files in work directory

post-data Dump source database post-data schema as custom files in work directory

roles

pgcopydb r
schema
pre-data
post-dat
roles
parse-1li

pgcopydb 1
tables

Dump source database roles as custome file in work directory

estore
Restore a database schema from custom files to target database
Restore a database pre-data schema from custom file to target database
a Restore a database post-data schema from custom file to target database
Restore database roles from SQL file to target database
st Parse pg_restore --list output from custom file

ist
List all the source tables to copy data from

table-parts List a source table copy partitions

sequence
indexes
depends

pgcopydb s
setup
cleanup
prefetch
catchup
create
drop
sentinel
receive

+ o+ o+

s List all the source sequences to copy data from
List all the indexes to create again after copying the data
List all the dependencies to filter-out

tream
Setup source and target systems for logical decoding
cleanup source and target systems for logical decoding
Stream JSON changes from the source database and transform them to SQL
Apply prefetched changes from SQL files to the target database
Create resources needed for pgcopydb
Drop resources needed for pgcopydb
Maintain a sentinel table on the source database
Stream changes from the source database

transform Transform changes from the source database into SQL commands

apply

pgcopydb s
slot
origin

pgcopydb s
slot
origin

pgcopydb s
create
drop
get

+ set

pgcopydb s
startpos

Apply changes from the source database into the target database

tream create
Create a replication slot in the source database
Create a replication origin in the target database

tream drop
Drop a replication slot in the source database
Drop a replication origin in the target database

tream sentinel

Create the sentinel table on the source database
Drop the sentinel table on the source database

Get the sentinel table values on the source database
Maintain a sentinel table on the source database

tream sentinel set
Set the sentinel start position LSN on the source database

(continues on next page)

14

Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

endpos Set the sentinel end position LSN on the source database
apply Set the sentinel apply mode on the source database
prefetch Set the sentinel prefetch mode on the source database

4.1.4 pgcopydb version

The pgcopydb version command outputs the version string of the version of pgcopydb used, and can do that in the
JSON format when using the --json option.

$ pgcopydb version

pgcopydb version 0.8

compiled with PostgreSQL 12.12 on x86_64-apple-darwinl6.7.0, compiled by Apple LLVM version 8.1.0 (clang-802.0.42), 64-bit
compatible with Postgres 10, 11, 12, 13, and 14

In JSON:

$ pgcopydb version --json

“pgcopydb”: "0.8",
"pg_major": "12",
"pg_version": "12.12",

"pg_version_str": "PostgreSQL 12.12 on x86_64-apple-darwinl6.7.0, compiled by Apple LLVM version 8.1.0 (clang-802.0.42),..
—64-bit",

"pg_version_num": 120012
}

The details about the Postgres version applies to the version that’s been used to build pgcopydb from sources, so that’s
the version of the client library 1ibpq really.

4.2 pgcopydb clone

The main pgcopydb operation is the clone operation, and for historical and user friendlyness reasons three aliases are
available that implement the same operation:

pgcopydb
clone Clone an entire database from source to target
fork Clone an entire database from source to target

copy-db Copy an entire database from source to target

4.2.1 pgcopydb clone

The command pgcopydb clone copies a database from the given source Postgres instance to the target Postgres
instance.

pgcopydb clone: Clone an entire database from source to target

usage: pgcopydb clone --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--table-jobs Number of concurrent COPY jobs to run
--index-jobs Number of concurrent CREATE INDEX jobs to run
--split-tables-larger-than Same-table concurrency size threshold
--drop-if-exists On the target database, clean-up from a previous run first
--roles Also copy roles found on source to target
--no-owner Do not set ownership of objects to match the original database
--no-acl Prevent restoration of access privileges (grant/revoke commands).
--no-comments Do not output commands to restore comments
--skip-large-objects Skip copying large objects (blobs)
--skip-extensions Skip restoring extensions

(continues on next page)

4.2. pgcopydb clone 15

pgcopydb, Release 0.9

(continued from previous page)

--filters <filename> Use the filters defined in <filename>

--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot
--follow Implement logical decoding to replay changes
--slot-name Use this Postgres replication slot name
--create-slot Create the replication slot

--origin Use this Postgres replication origin node name
--endpos Stop replaying changes when reaching this LSN

4.2.2 pgcopydb fork

The command pgcopydb fork copies a database from the given source Postgres instance to the target Postgres in-
stance. This command is an alias to the command pgcopydb clone seen above.

4.2.3 pgcopydb copy-db

The command pgcopydb copy-db copies a database from the given source Postgres instance to the target Postgres
instance. This command is an alias to the command pgcopydb clone seen above, and available for backward com-
patibility only.

Warning: The pgcopydb copy-db command is now deprecated and will get removed from pgcopydb when
hitting version 1.0, please upgrade your scripts and integrations.

4.2.4 Description

The pgcopydb clone command implements both a base copy of a source database into a target database and also a
full Logical Decoding client for the wal2json logical decoding plugin.

Base copy, or the clone operation

The pgcopydb clone command implements the following steps:

1.

pgcopydb calls into pg_dump to produce the pre-data section and the post-data sections of the dump using
Postgres custom format.

pgcopydb gets the list of ordinary and partitioned tables from a catalog query on the source database, and also
the list of indexes, and the list of sequences with their current values.

When filtering is used, the list of objects OIDs that are meant to be filtered out is built during this step.

The pre-data section of the dump is restored on the target database using the pg_restore command, creating
all the Postgres objects from the source database into the target database.

When filtering is used, the pg_restore --use-list feature is used to filter the list of objects to restore in this
step.

Then as many as --table-jobs COPY sub-processes are started to share the workload and COPY the data from
the source to the target database one table at a time, in a loop.

A Postgres connection and a SQL query to the Postgres catalog table pg_class is used to get the list of tables with
data to copy around, and the reltuples statistic is used to start with the tables with the greatest number of rows
first, as an attempt to minimize the copy time.

16

Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/logicaldecoding.html
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

5. An auxiliary process loops through all the Large Objects found on the source database and copies its data parts
over to the target database, much like pg_dump itself would.

This step is much like pg_dump | pg_restore for large objects data parts, except that there isn’t a good way
to do just that with the tooling.

6. As many as --index-jobs CREATE INDEX sub-processes are started to share the workload and build indexes.
In order to make sure to start the CREATE INDEX commands only after the COPY operation has completed, a
queue mechanism is used. As soon as a table data COPY has completed, all the indexes for the table are queued
for processing by the CREATE INDEX sub-processes.

The primary indexes are created as UNIQUE indexes at this stage.

7. Then the PRIMARY KEY constraints are created USING the just built indexes. This two-steps approach al-
lows the primary key index itself to be created in parallel with other indexes on the same table, avoiding an
EXCLUSIVE LOCK while creating the index.

8. As many as -table-jobs VACUUM ANALYZE sub-processes are started to share the workload. As soon as a
table data COPY has completed, the table is queued for processing by the VACUUM ANALYZE sub-processes.

9. An auxilliary process is loops over the sequences on the source database and for each of them runs a separate
query on the source to fetch the last_value and the is_called metadata the same way that pg_dump does.

For each sequence, pgcopydb then calls pg_catalog.setval() on the target database with the information
obtained on the source database.

10. The final stage consists now of running the pg_restore command for the post-data section script for the
whole database, and that’s where the foreign key constraints and other elements are created.

The post-data script is filtered out using the pg_restore --use-1list option so that indexes and primary key
constraints already created in steps 6 and 7 are properly skipped now.

Postgres privileges, superuser, and dump and restore

Postgres has a notion of a superuser status that can be assigned to any role in the system, and the default role postgres
has this status. From the Role Attributes documentation page we see that:

superuser status:

A database superuser bypasses all permission checks, except the right to log in. This is a dangerous
privilege and should not be used carelessly; it is best to do most of your work as a role that is not a
superuser. To create a new database superuser, use CREATE ROLE name SUPERUSER. You must do this
as a role that is already a superuser.

Some Postgres objects can only be created by superusers, and some read and write operations are only allowed to
superuser roles, such as the following non-exclusive list:

* Reading the pg_authid role password (even when encrypted) is restricted to roles with the superuser status.
Reading this catalog table is done when calling pg_dumpall --roles-only so that the dump file can then be
used to restore roles including their passwords.

* Most of the available Postgres extensions, at least when being written in C, are then only allowed to be created
by roles with superuser status.

When such an extension contains Extension Configuration Tables and has been created with a role having su-
peruser status, then the same superuser status is needed again to pg_dump and pg_restore that extension and its
current configuration.

When using pgcopydb it is possible to split your migration in privileged and non-privileged parts, like in the following
examples:

4.2. pgcopydb clone 17

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/catalog-pg-authid.html
https://www.postgresql.org/docs/current/extend-extensions.html#EXTEND-EXTENSIONS-CONFIG-TABLES

R T SR S

pgcopydb, Release 0.9

$ coproc (pgcopydb snapshot)

first two commands would use a superuser role to connect
$ pgcopydb copy roles --source ... --target ...
$ pgcopydb copy extensions --source ... --target ...

now it's possible to use a non-superuser role to connect
$ pgcopydb clone --skip-extensions --source ... --target ...

$ kill -TERM ${COPROC_PID
§ wait COPROC_PID

In such a script, the calls to pgcopydb copy roles and pgcopydb copy extensions would be done with connection strings
that connects with a role having superuser status; and then the call to pgcopydb clone would be done with a non-
privileged role, typically the role that owns the source and target databases.

Warning: That said, there is currently a limitation in pg_dump that impacts pgcopydb. When an extension with
configuration table has been installed as superuser, even the main pgcopydb clone operation has to be done with
superuser status.

That’s because pg_dump filtering (here, there --exclude-table option) does not apply to extension members,
and pg_dump does not provide a mechanism to exclude extensions.

Change Data Capture using Postgres Logical Decoding

When using the --follow option the steps from the pgcopydb follow command are also run concurrently to the main
copy. The Change Data Capture is then automatically driven from a prefetch-only phase to the prefetch-and-catchup
phase, which is enabled as soon as the base copy is done.

See the command pgcopydb stream sentinel set endpos to remote control the follow parts of the command even while
the command is already running.

The command pgcopydb stream cleanup must be used to free resources created to support the change data capture
process.

Important: Make sure to read the documentation for pgcopydb follow and the specifics about Logical Replication
Restrictions as documented by Postgres.

Change Data Capture Example 1

A simple approach to applying changes after the initial base copy has been done follows:

$ pgcopydb clone --follow &

later when the application is ready to make the switch
$ pgcopydb stream sentinel set endpos --current

later when the migration is finished, clean-up both source and target
$ pgcopydb stream cleanup

18 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

® 9 U AW —

10
11
12
13

pgcopydb, Release 0.9

Change Data Capture Example 2

In some cases, it might be necessary to have more control over some of the steps taken here. Given pgcopydb flexibility,
it’s possible to implement the following steps:

1. Grab a snapshot from the source database and hold an open Postgres connection for the duration of the base copy.

In case of crash or other problems with the main operations, it’s then possible to resume processing of the base
copy and the applying of the changes with the same snapshot again.

This step is also implemented when using pgcopydb clone --follow. That said, if the command was inter-
rupted (or crashed), then the snapshot would be lost.

2. Setup the logical decoding within the snapshot obtained in the previous step, and the replication tracking on the
target database.

The following SQL objects are then created:
* areplication slot on the source database,
e a pgcopydb.sentinel table on the source database,
* areplication origin on the target database.

This step is also implemented when using pgcopydb clone --follow. There is no way to implement Change
Data Capture with pgcopydb and skip creating those SQL objects.

3. Start the base copy of the source database, and prefetch logical decoding changes to ensure that we consume
from the replication slot and allow the source database server to recycle its WAL files.

4. Remote control the apply process to stop consuming changes and applying them on the target database.
5. Re-sync the sequences to their now-current values.

Sequences are not handled by Postgres logical decoding, so extra care needs to be implemented manually here.

Important: The next version of pgcopydb will include that step in the pgcopydb clone --snapshot com-
mand automatically, after it stops consuming changes and before the process terminates.

6. Clean-up the specific resources created for supporting resumability of the whole process (replication slot on the
source database, pgcopydb sentinel table on the source database, replication origin on the target database).

7. Stop holding a snaphot on the source database by stopping the pgcopydb snapshot process left running in the
background.

If the command pgcopydb clone --follow fails it’s then possible to start it again. It will automatically discover
what was done successfully and what needs to be done again because it failed or was interrupted (table copy, index
creation, resuming replication slot consuming, resuming applying changes at the right LSN position, etc).

Here is an example implement the previous steps:

$ pgcopydb snapshot &
$ pgcopydb stream setup
$ pgcopydb clone --follow &

later when the application is ready to make the switch
$ pgcopydb stream sentinel set endpos --current

when the follow process has terminated, re-sync the sequences
$ pgcopydb copy sequences

later when the migration is finished, clean-up both source and target
$ pgcopydb stream cleanup

(continues on next page)

4.2. pgcopydb clone 19

15
16
17

pgcopydb, Release 0.9

(continued from previous page)

now stop holding the snapshot transaction (adjust PID to your environment)

$ kill %1

4.2.5 Options

The following options are available to pgcopydb clone:

--source

--target

--dir

--table-jobs

--index-jobs

Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

Connection string to the target Postgres instance.

During its normal operations pgcopydb creates a lot of temporary files to track
sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR} /pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be run-
ning at the same time that this limit while the CREATE INDEX operations are
in progress, though then the processes are only waiting for the target Postgres
instance to do all the work.

How many indexes can be built in parallel, globally. A good option is to set this
option to the count of CPU cores that are available on the Postgres target system,
minus some cores that are going to be used for handling the COPY operations.

--split-tables-larger-than Allow Same-table Concurrency when processing the source database. This

--drop-if-exists

--roles

=--no-owner

environment variable value is expected to be a byte size, and bytes units B, kB,
MB, GB, TB, PB, and EB are known.

When restoring the schema on the target Postgres instance, pgcopydb actually
uses pg_restore. When this options is specified, then the following pg_restore
options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row, either
to fix a previous mistake or for instance when used in a continuous integration
system.

This option causes DROP TABLE and DROP INDEX and other DROP commands to
be used. Make sure you understand what you’re doing here!

The option --roles add a preliminary step that copies the roles found on the
source instance to the target instance. As Postgres roles are global object, they do
not exist only within the context of a specific database, so all the roles are copied
over when using this option.

The pg_dumpall --roles-only is used to fetch the list of roles from the source
database, and this command includes support for passwords. As a result, this
operation requires the superuser privileges.

See also pgcopydb copy roles.

Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET SESSION

20

Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

pgcopydb, Release 0.9

AUTHORIZATION statements to set ownership of created schema elements. These
statements will fail unless the initial connection to the database is made by a
superuser (or the same user that owns all of the objects in the script). With
--no-owner, any user name can be used for the initial connection, and this user
will own all the created objects.

--skip-large-objects Skip copying large objects, also known as blobs, when copying the data from the
source database to the target database.

--skip-extensions Skip copying extensions from the source database to the target database.

When used, schema that extensions depend-on are also skipped: it is expected that
creating needed extensions on the target system is then the responsibility of an-
other command (such as pgcopydb copy extensions), and schemas that extensions
depend-on are part of that responsibility.

Because creating extensions require superuser, this allows a multi-steps approach
where extensions are dealt with superuser privileges, and then the rest of the pg-
copydb operations are done without superuser privileges.

-filters <filename> This option allows to exclude table and indexes from the copy operations. See Fil-
tering for details about the expected file format and the filtering options available.

--restart When running the pgcopydb command again, if the work directory already con-
tains information from a previous run, then the command refuses to proceed and
delete information that might be used for diagnostics and forensics.

In that case, the --restart option can be used to allow pgcopydb to delete traces
from a previous run.

--resume When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is possible to
resume the database migration.

When resuming activity from a previous run, table data that was fully copied over
to the target server is not sent again. Table data that was interrupted during the
COPY has to be started from scratch even when using --resume: the COPY
command in Postgres is transactional and was rolled back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a --resume run
only if known to have run through to completion on the previous one.

Finally, using --resume requires the use of --not-consistent.

--not-consistent In order to be consistent, pgcopydb exports a Postgres snapshot by calling the
pg_export_snapshot() function on the source database server. The snapshot is
then re-used in all the connections to the source database server by using the SET
TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string iden-
tifying the snapshot. This string must be passed (outside the database)
to clients that want to import the snapshot. The snapshot is available
for import only until the end of the transaction that exported it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous run,
it is possible to resume operations, but the snapshot that was exported does not
exists anymore. The pgcopydb command can only resume operations with a new

4.2. pgcopydb clone 21

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE

pgcopydb, Release 0.9

snapshot, and thus can not ensure consistency of the whole data set, because each
run is now using their own snapshot.

--snapshot Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot () it is possible for pgcopydb to re-use an already ex-
ported snapshot.

--follow When the --follow option is used then pgcopydb implements Change Data Cap-
ture as detailed in the manual page for pgcopydb follow in parallel to the main copy
database steps.

The replication slot is created using the same snapshot as the main database copy
operation, and the changes to the source database are prefetched only during the
initial copy, then prefetched and applied in a catchup process.

It is possible to give pgcopydb clone --follow a termination point (the LSN
endpos) while the command is running with the command pgcopydb stream sen-
tinel set endpos.

--slot-name Logical replication slot to use. At the moment pgcopydb doesn’t know how to
create the logical replication slot itself. The slot should be created within the
same transaction snapshot as the initial data copy.

Must be using the wal2json output plugin, available with format-version 2.
--create-slot Instruct pgcopydb to create the logical replication slot to use.

--endpos Logical replication target LSN to use. Automatically stop replication and exit with
normal exit status O when receiving reaches the specified LSN. If there’s a record
with LSN exactly equal to Isn, the record will be output.

The --endpos option is not aware of transaction boundaries and may truncate
output partway through a transaction. Any partially output transaction will not be
consumed and will be replayed again when the slot is next read from. Individual
messages are never truncated.

See also documentation for pg_recvlogical.

--origin Logical replication target system needs to track the transactions that have been
applied already, so that in case we get disconnected or need to resume operations
we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in Replication
Progress Tracking. This option allows to pick your own node name and defaults to
“pgcopydb”. Picking a different name is useful in some advanced scenarios like
migrating several sources in the same target, where each source should have their
own unique origin node name.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.
--trace Set current verbosity to TRACE level.
--quiet Set current verbosity to ERROR level.

22 Chapter 4. Manual Pages

https://github.com/eulerto/wal2json/
https://www.postgresql.org/docs/current/app-pgrecvlogical.html
https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/replication-origins.html

pgcopydb, Release 0.9

4.2.6 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel. When --table-jobs is ommitted
from the command line, then this environment variable is used.

PGCOPYDB_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in parallel. When --index-jobs
is ommitted from the command line, then this environment variable is used.

PGCOPYDB_SPLIT _TABLES_LARGER_THAN

Allow Same-table Concurrency when processing the source database. This environment variable value is
expected to be a byte size, and bytes units B, kB, MB, GB, TB, PB, and EB are known.

When --split-tables-larger-than is ommitted from the command line, then this environment vari-
able is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean) then pgcopydb uses the pg_restore options
--clean --if-exists when creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT
Postgres snapshot identifier to re-use, see also --snapshot.
TMPDIR

The pgcopydb command creates all its work files and directories in ${TMPDIR}/pgcopydb, and defaults
to /tmp/pgcopydb.

XDG_DATA_HOME

The standard XDG Base Directory Specification defines several environment variables that allow control-
ing where programs should store their files.

XDG_DATA_HOME defines the base directory relative to which user-specific data files
should be stored. If $XDG_DATA_HOME is either not set or empty, a default equal to
SHOME/.local/share should be used.

When using Change Data Capture (through --follow option and Postgres logical decoding with wal2json)
then pgcopydb pre-fetches changes in JSON files and transform them into SQL files to apply to the target
database.

These files are stored at the following location, tried in this order:
1. when --dir is used, then pgcopydb uses the cdc subdirectory of the --dir location,
2. when XDG_DATA_HOUME is set in the environment, then pgcopydb uses that location,

3. when neither of the previous settings have been used then pgcopydb defaults to using ${HOME}/.
local/share.

4.2. pgcopydb clone

23

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.2.7 Examples

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"
$ export PGCOPYDB_DROP_IF_EXISTS=on

$ pgcopydb clone --table-jobs 8 --index-jobs 12

13:09:08 81987 INFO Running pgcopydb version 0.8.21.gacd2795.dirty from "/Applications/Postgres.app/Contents/Versions/12/bin/
<spgcopydb"

13:09:08 81987 INFO [SOURCE] Copying database from "postgres://@:/pagila?"

13:09:08 81987 INFO [TARGET] Copying database into "postgres://@:/plop?"

13:09:08 81987 INFO Using work dir "/var/folders/d7/zzxmgs9s16gdxxcm@hs®sssw0000gn/T//pgcopydb”

13:09:08 81987 INFO Exported snapshot "00000003-00076012-1" from the source database

13:09:08 81991 INFO STEP 1: dump the source database schema (pre/post data)

13:09:08 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --snapshot 00000003-00076012-1 --section,.
—pre-data --file /var/folders/d7/zzxmgs9s16gdxxcmOhs0sssw®000gn/T//pgcopydb/schema/pre.dump 'postgres://@:/pagila?’
13:09:08 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --snapshot 00000003-00076012-1 --section,.
—>post-data --file /var/folders/d7/zzxmgs9s16gdxxcm®hs0@sssw®000gn,/T//pgcopydb/schema/post.dump 'postgres://@:/pagila?’
13:09:08 81991 INFO STEP 2: restore the pre-data section to the target database

13:09:09 81991 INFO Listing ordinary tables in source database

13:09:09 81991 INFO Fetched information for 21 tables, with an estimated total of 46 248 tuples and 3776 kB

13:09:09 81991 INFO Fetching information for 13 sequences

13:09:09 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'postgres://@:/plop?' --single-
—»transaction --clean --if-exists --use-list /var/folders/d7/zzxmgs9s16gdxxcm®hs0sssw@000gn/T//pgcopydb/schema/pre.list /var/
—folders/d7/zzxmgs9s16gdxxcmOhs0sssw0000gn/T//pgcopydb/schema/pre . dump

13:09:09 81991 INFO STEP 3: copy data from source to target in sub-processes

13:09:09 81991 INFO STEP 4: create indexes and constraints in parallel

13:09:09 81991 INFO STEP 5: vacuum analyze each table

13:09:09 81991 INFO Now starting 8 processes

13:09:09 81991 INFO Reset sequences values on the target database

13:09:09 82003 INFO COPY "public"."rental"

13:09:09 82004 INFO COPY "public"."film"

13:09:09 82009 INFO COPY "public"."payment_p2020_04"

13:09:09 82002 INFO Copying large objects

13:09:09 82007 INFO COPY "public"."payment_p2020_03"

13:09:09 82010 INFO COPY "public"."film_actor"

13:09:09 82005 INFO COPY "public"."inventory"

13:09:09 82014 INFO COPY "public"."payment_p2020_02"

13:09:09 82012 INFO COPY "public"."customer"

13:09:09 82009 INFO Creating 3 indexes for table "public"."payment_p2020_04"

13:09:09 82010 INFO Creating 2 indexes for table "public"."film_actor"

13:09:09 82007 INFO Creating 3 indexes for table "public"."payment_p2020_03"

13:09:09 82004 INFO Creating 5 indexes for table "public"."film"

13:09:09 82005 INFO Creating 2 indexes for table "public"."inventory"

13:09:09 82033 INFO VACUUM ANALYZE "public".'"payment_p2020_04";

13:09:09 82036 INFO VACUUM ANALYZE "public"."film_actor";

13:09:09 82039 INFO VACUUM ANALYZE "public"."payment_p2020_03";

13:09:09 82041 INFO VACUUM ANALYZE "public"."film";

13:09:09 82043 INFO VACUUM ANALYZE "public"."inventory";

13:09:09 81991 INFO STEP 7: restore the post-data section to the target database

13:09:09 81991 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'postgres://@:/plop?' --single-
—stransaction --clean --if-exists --use-list /var/folders/d7/zzxmgs9s16gdxxcm®hs@sssw®000gn/T//pgcopydb/schema/post.list /var/
< folders/d7/zzxmgs9s16gdxxcmOhs®sssw®O00gn/T//pgcopydb/schema/post . dump

Step Connection Duration Concurrency

Dump Schema source 355ms 1

Prepare Schema target 135ms 1

COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both 641ms 8 + 12
COPY (cumulative) both 1s598 8

Large Objects (cumulative) both 29ms 1

CREATE INDEX, CONSTRAINTS (cumulative) target 45072 12
Finalize Schema target 366ms 1

Total Wall Clock Duration both 1s499 8 + 12

24 Chapter 4. Manual Pages

pgcopydb, Release 0.9

4.3 pgcopydb follow

The command pgcopydb follow replays the database changes registered at the source database with the logical de-
coding pluing wal2json into the target database.

Important: While the pgcopydb follow is a full client for the logical decoding plugin wal2json, the general use
case involves using pgcopydb clone --follow as documented in Change Data Capture using Postgres Logical
Decoding.

When using Logical Decoding with pgcopydb or another tool, consider making sure you’re familiar with the Logical
Replication Restrictions that apply. In particular:

* DDL are not replicated.

When using DDL for partition scheme maintenance, such as when using the pg_partman extension, then consider
creating a week or a month of partitions in advance, so that creating new partitions does not happen during the
migration window.

» Sequence data is not replicated.

When using pgcopydb clone --follow (starting with pgcopydb version 0.9) then the sequence data is synced
at the end of the operation, after the cutover point implemented via the pgcopydb stream sentinel set endpos.

Updating the sequences manually is also possible by running the command pgcopydb copy sequences.
» Large Objects are not replicated.

See the Postgres documentation page for Logical Replication Restrictions to read the exhaustive list of restrictions.

4.3.1 pgcopydb follow

pgcopydb follow: Replay changes from the source database to the target database

usage: pgcopydb follow --source ... --target ...
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--filters <filename> Use the filters defined in <filename>
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot
--slot-name Use this Postgres replication slot name
--create-slot Create the replication slot
--origin Use this Postgres replication origin node name
--endpos Stop replaying changes when reaching this LSN

4.3.2 Description

This command runs two concurrent subprocesses.

1. The first one pre-fetches the changes from the source database using the Postgres Logical Decoding protocol and
save the JSON messages in local JSON files.

The logical decoding plugin wal2json must be available on the source database system.

Each time a JSON file is closed, an auxilliary process is started to transform the JSON file into a matching SQL
file. This processing is done in the background, and the main receiver process only waits for the transformation
process to be finished when there is a new JSON file to transform.

4.3. pgcopydb follow 25

https://github.com/eulerto/wal2json/
https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://github.com/pgpartman/pg_partman
https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

In other words, only one such transform process can be started in the background, and the process is blocking
when a second one could get started.

The design model here is based on the assumption that receiving the next set of JSON messages that fills-up
a whole JSON file is going to take more time than transforming the JSON file into an SQL file. When that
assumption proves wrong, consider opening an issue on the github project for pgcopydb.

2. The second process catches-up with changes happening on the source database by applying the SQL files to the
target database system.

The Postgres API for Replication Progress Tracking is used in that process so that we can skip already applied
transactions at restart or resume.

It is possible to start the pgcopydb follow command and then later, while it’s still running, set the LSN for the
end position with the same effect as using the command line option --endpos, or switch from prefetch mode only to
prefetch and catchup mode. For that, see the commands pgcopydb stream sentinel set endpos, pgcopydb stream sentinel
set apply, and pgcopydb stream sentinel set prefetch.

Note that in many case the --endpos LSN position is not known at the start of this command. Also before entering
the prefetch and apply mode it is important to make sure that the initial base copy is finished.

Finally, it is also possible to setup the streaming replication options before using the pgcopydb follow command:
see the pgcopydb stream setup and pgcopydb stream cleanup commands.

4.3.3 Replica Identity and lack of Primary Keys

Postgres Logical Decoding works with replaying changes using SQL statements, and for that exposes the concept of
Replica Identity as described in the documentation for the ALTER TABLE ... REPLICA IDENTITY command.

To quote Postgres docs:

This form changes the information which is written to the write-ahead log to identify rows which are up-
dated or deleted. In most cases, the old value of each column is only logged if it differs from the new value;
however, if the old value is stored externally, it is always logged regardless of whether it changed. This
option has no effect except when logical replication is in use.

To support Change Data Capture with Postgres Logical Decoding for tables that do not have a Primary Key, then it is
necessary to use the ALTER TABLE ... REPLICA IDENTITY command for those tables.

In practice the two following options are to be considered:
* REPLICA IDENTITY USING INDEX index_name

This form is prefered when a UNIQUE index exists for the table without a primary key. The index
must be unique, not partial, not deferrable, and include only columns marked NOT NULL.

* REPLICA IDENTITY FULL

When this is used on a table, then the WAL records contain the old values of all columns in the row.

26 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current//replication-origins.html
https://www.postgresql.org/docs/current/sql-altertable.html

pgcopydb, Release 0.9

4.3.4 Logical Decoding Pre-Fetching

When using pgcopydb clone --follow alogical replication slot is created on the source database before the initial
COPY, using the same Postgres snapshot. This ensure data consistency.

Within the pgcopydb clone --follow approach, it is only possible to start applying the changes from the source
database after the initial COPY has finished on the target database.

Also, from the Postgres documentation we read that Postgres replication slots provide an automated way to ensure that
the primary does not remove WAL segments until they have been received by all standbys.

Accumulating WAL segments on the primary during the whole duration of the initial COPY involves capacity hazards,
which translate into potential File System is Full errors on the WAL disk of the source database. It is crucial to avoid
such a situation.

This is why pgcopydb implements CDC pre-fetching. In parallel to the initial COPY the command pgcopydb clone
--follow pre-fetches the changes in local JSON and SQL files. Those files are placed in the XDG_DATA_HOME
location, which could be a mount point for an infinite Blob Storage area.

The pgcopydb follow command is a convenience command that’s available as a logical decoding client for the
wal2json plugin, and it shares the same implementation as the pgcopydb clone --follow command. As a result,
the pre-fetching strategy is also relevant to the pgcopydb follow command.

4.3.5 The sentinel table, or the Remote Control

To track progress and allow resuming of operations, pgcopydb uses a sentinel table on the source database. The sentinel
table consists of a single row with the following fields:

$ pgcopydb stream sentinel get
startpos 1/8D173AF8

endpos 0/0

apply disabled

write_lsn /0

flush_1sn 0/0

replay_lsn 0/0

Note that you can use the command pgcopydb stream sentinel get --json to fetch a JSON formatted output,
such as the following:

{
"startpos": "1/8D173AF8",
"endpos": "1/8D173AF8",
"apply": false,
"write_lsn": "0/0",
"flush_lsn": "0/0",
"replay_lsn": "0/0"

}

The first three fields (startpos, endpos, apply) are specific to pgcopydb, then the following three fields (write_lsn,
flush_lsn, replay_Isn) follow the Postgres replication protocol as visible in the docs for the pg_stat_replication function.

e startpos

The startpos field is the current LSN on the source database at the time when the Change Data Capture is setup
in pgcopydb, such as when using the pgcopydb stream setup command.

Note that both the pgcopydb follow and the pgcopydb clone --follow command implement the setup
parts if the pgcopydb stream setup has not been used already.

¢ endpos

The endpos field is last LSN position from the source database that pgcopydb replays. The command pgcopydb
follow (or pgcopydb clone --follow) stops when reaching beyond this LSN position.

4.3. pgcopydb follow 27

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-VIEW

pgcopydb, Release 0.9

The endpos can be set at the start of the process, which is useful for unit testing, or while the command is
running, which is useful in production to define a cutover point.

To define the endpos while the command is running, use pgcopydb stream sentinel set endpos.
apply

The apply field is a boolean (enabled/disabled) that control the catchup process. The pgcopydb catchup process
replays the changes only when the apply boolean is set to true.

The pgcopydb clone --follow command automatically enables the apply field of the sentinel table as soon
as the initial COPY is done.

To manually control the apply field, use the pgcopydb stream sentinel set apply command.
write_lsn

The Postgres documentation for pg_stat_replication.write_lsnis: Last write-ahead log location written
to disk by this standby server.

In the pgcopydb case, the sentinel field write_lsn is the position that has been written to disk (as JSON) by the
streaming process.

flush_1lsn

The Postgres documentation for pg_stat_replication.flush_lsnis: Last write-ahead log location flushed
to disk by this standby server

In the pgcopydb case, the sentinel field flush_lsn is the position that has been written and then fsync’ed to disk
(as JSON) by the streaming process.

replay_lsn

The Postgres documentation for pg_stat_replication.replay_lsn is: Last write-ahead log location re-
played into the database on this standby server

In the pgcopydb case, the sentinel field replay_lsn is the position that has been applied to the target database, as
kept track from the WAL.json and then the WAL.sql files, and using the Postgres API for Replication Progress
Tracking.

The replay_lsn is also shared by the pgcopydb streaming process that uses the Postgres logical replication proto-
col, so the pg_stat_replication entry associated with the replication slot used by pgcopydb can be used to monitor
replication lag.

As the pgcopydb streaming processes maintain the sentinel table on the source database, it is also possible to use it to
keep track of the logical replication progress.

4.3.6 Options

The following options are available to pgcopydb follow:

--source Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

--target Connection string to the target Postgres instance.

--dir During its normal operations pgcopydb creates a lot of temporary files to track

sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR} /pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

28

Chapter 4. Manual Pages

https://www.postgresql.org/docs/current//replication-origins.html
https://www.postgresql.org/docs/current//replication-origins.html
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

pgcopydb, Release 0.9

--restart

=--resume

--not-consistent

--snapshot

--slot-name

--create-slot

--endpos

When running the pgcopydb command again, if the work directory already con-
tains information from a previous run, then the command refuses to proceed and
delete information that might be used for diagnostics and forensics.

In that case, the --restart option can be used to allow pgcopydb to delete traces
from a previous run.

When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is possible to
resume the database migration.

When resuming activity from a previous run, table data that was fully copied over
to the target server is not sent again. Table data that was interrupted during the
COPY has to be started from scratch even when using --resume: the COPY
command in Postgres is transactional and was rolled back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a --resume run
only if known to have run through to completion on the previous one.

Finally, using --resume requires the use of --not-consistent.

In order to be consistent, pgcopydb exports a Postgres snapshot by calling the
pg_export_snapshot() function on the source database server. The snapshot is
then re-used in all the connections to the source database server by using the SET
TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string iden-
tifying the snapshot. This string must be passed (outside the database)
to clients that want to import the snapshot. The snapshot is available
for import only until the end of the transaction that exported it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous run,
it is possible to resume operations, but the snapshot that was exported does not
exists anymore. The pgcopydb command can only resume operations with a new
snapshot, and thus can not ensure consistency of the whole data set, because each
run is now using their own snapshot.

Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already ex-
ported snapshot.

Logical replication slot to use. At the moment pgcopydb doesn’t know how to
create the logical replication slot itself. The slot should be created within the
same transaction snapshot as the initial data copy.

Must be using the wal2json output plugin, available with format-version 2.
Instruct pgcopydb to create the logical replication slot to use.

Logical replication target LSN to use. Automatically stop replication and exit with
normal exit status 0 when receiving reaches the specified LSN. If there’s a record
with LSN exactly equal to Isn, the record will be output.

The --endpos option is not aware of transaction boundaries and may truncate
output partway through a transaction. Any partially output transaction will not be
consumed and will be replayed again when the slot is next read from. Individual
messages are never truncated.

See also documentation for pg_recvlogical.

4.3. pgcopydb follow

29

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE
https://github.com/eulerto/wal2json/
https://www.postgresql.org/docs/current/app-pgrecvlogical.html

pgcopydb, Release 0.9

--origin Logical replication target system needs to track the transactions that have been
applied already, so that in case we get disconnected or need to resume operations
we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in Replication
Progress Tracking. This option allows to pick your own node name and defaults to
“pgcopydb”. Picking a different name is useful in some advanced scenarios like
migrating several sources in the same target, where each source should have their
own unique origin node name.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.
--trace Set current verbosity to TRACE level.
--quiet Set current verbosity to ERROR level.

4.3.7 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_SNAPSHOT
Postgres snapshot identifier to re-use, see also --snapshot.
TMPDIR

The pgcopydb command creates all its work files and directories in ${TMPDIR}/pgcopydb, and defaults
to /tmp/pgcopydb.

XDG_DATA_HOME

The standard XDG Base Directory Specification defines several environment variables that allow control-
ing where programs should store their files.

XDG_DATA_HOME defines the base directory relative to which user-specific data files
should be stored. If $XDG_DATA_HOME is either not set or empty, a default equal to
SHOME/.local/share should be used.

When using Change Data Capture (through --follow option and Postgres logical decoding with wal2json)
then pgcopydb pre-fetches changes in JSON files and transform them into SQL files to apply to the target
database.

These files are stored at the following location, tried in this order:
1. when --dir is used, then pgcopydb uses the cdc subdirectory of the --dir location,
2. when XDG_DATA_HOUME is set in the environment, then pgcopydb uses that location,

3. when neither of the previous settings have been used then pgcopydb defaults to using ${HOME}/ .
local/share.

30 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/replication-origins.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.4 pgcopydb snapshot

pgcopydb snapshot - Create and exports a snapshot on the source database

The command pgcopydb snapshot connects to the source database and executes a SQL query to export a snapshot.
The obtained snapshot is both printed on stdout and also in a file where other pgcopydb commands might expect to
find it.

pgcopydb snapshot: Create and exports a snapshot on the source database
usage: pgcopydb snapshot --source ...

--source Postgres URI to the source database
--dir Work directory to use

4.4.1 Options

The following options are available to pgcopydb create and pgcopydb drop subcommands:

--source Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

--dir During its normal operations pgcopydb creates a lot of temporary files to track

sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR}/pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

--snapshot Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already ex-
ported snapshot.

--slot-name Logical replication slot name to use, default to pgcopydb. The slot should be
created within the same transaction snapshot as the initial data copy.

Must be using the wal2json output plugin, available with format-version 2.

--origin Logical replication target system needs to track the transactions that have been
applied already, so that in case we get disconnected or need to resume operations
we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in Replication
Progress Tracking. This option allows to pick your own node name and defaults to
“pgcopydb”. Picking a different name is useful in some advanced scenarios like
migrating several sources in the same target, where each source should have their
own unique origin node name.

--startpos Logical replication target system registers progress by assigning a current LSN to
the --origin node name. When creating an origin on the target database system,
itis required to provide the current LSN from the source database system, in order
to properly bootstrap pgcopydb logical decoding.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.

--trace Set current verbosity to TRACE level.

4.4. pgcopydb snapshot 31

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://github.com/eulerto/wal2json/
https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/replication-origins.html

pgcopydb, Release 0.9

--quiet Set current verbosity to ERROR level.

4.4.2 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

4.4.3 Examples

Create a snapshot on the source database in the background:

$ pgcopydb snapshot &

[1] 72938

17:31:52 72938 INFO Running pgcopydb version 0.7.13.gcbf2d16.dirty from "/Users/dim/dev/PostgreSQL/pgcopydb/./src/bin/
—pgcopydb/pgcopydb"”

17:31:52 72938 INFO Using work dir "/var/folders/d7/zzxmgs9s16gdxxcm@hs®sssw0000gn/T//pgcopydb”

17:31:52 72938 INFO Removing the stale pid file "/var/folders/d7/zzxmgs9s16gdxxcm®hs®sssw®000gn/T//pgcopydb/pgcopydb.aux.pid"
17:31:52 72938 INFO Work directory "/var/folders/d7/zzxmgs9s16gdxxcm®hs®sssw0000gn/T//pgcopydb"” already exists

17:31:52 72938 INFO Exported snapshot "00000003-000CB5FE-1" from the source database

00000003-000CB5FE-1

And when the process is done, stop maintaining the snapshot in the background:

$ kill %1
17:31:56 72938 INFO Asked to terminate, aborting
[1]+ Done pgcopydb snapshot

4.5 pgcopydb copy

pgcopydb copy - Implement the data section of the database copy

This command prefixes the following sub-commands:

pgcopydb copy
db Copy an entire database from source to target

roles Copy the roles from the source instance to the target instance

extensions Copy the extensions from the source instance to the target instance

schema Copy the database schema from source to target

data Copy the data section from source to target

table-data Copy the data from all tables in database from source to target

blobs Copy the blob data from ther source database to the target

sequences Copy the current value from all sequences in database from source to target
indexes Create all the indexes found in the source database in the target

constraints Create all the constraints found in the source database in the target

Those commands implement a part of the whole database copy operation as detailed in section pgcopydb clone. Only
use those commands to debug a specific part, or because you know that you just want to implement that step.

Warning: Using the pgcopydb clone command is strongly advised.

This mode of operations is useful for debugging and advanced use cases only.

32 Chapter 4. Manual Pages

pgcopydb, Release 0.9

4.5.1 pgcopydb copy db

pgcopydb copy db - Copy an entire database from source to target

The command pgcopydb copy db is an alias for pgcopydb clone. See also pgcopydb clone.

pgcopydb copy db: Copy an entire database from source to target

usage: pgcopydb copy db

--source

--source ... --target ... [--table-jobs ... --index-jobs ...]

Postgres URI to the source database

--target Postgres URI to the target database

--dir Work directory to use

--table-jobs Number of concurrent COPY jobs to run

--index-jobs Number of concurrent CREATE INDEX jobs to run

--drop-if-exists On the target database, clean-up from a previous run first
--roles Also copy roles found on source to target

--no-owner Do not set ownership of objects to match the original database
--no-acl Prevent restoration of access privileges (grant/revoke commands) .

--no-comments
--skip-large-objects
--filters <filename>

Do not output commands to restore comments
Skip copying large objects (blobs)
Use the filters defined in <filename>

--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot

4.5.2 pgcopydb copy roles

pgcopydb copy roles - Copy the roles from the source instance to the target instance

The command pgcopydb copy roles implements both pgcopydb dump roles and then pgcopydb restore roles.

pgcopydb copy roles: Copy the roles from the source instance to the target instance

usage: pgcopydb copy roles

--source
--target
--dir

--source ... --target ...
Postgres URI to the source database
Postgres URI to the target database
Work directory to use

Note: In Postgres, roles are a global object. This means roles do not belong to any specific database, and as a result,
even when the pgcopydb tool otherwise works only in the context of a specific database, this command is not limited
to roles that are used within a single database.

When a role already exists on the target database, its restoring is entirely skipped, which includes skipping both the
CREATE ROLE and the ALTER ROLE commands produced by pg_dumpall --roles-only.

The pg_dumpall --roles-only is used to fetch the list of roles from the source database, and this command includes
support for passwords. As a result, this operation requires the superuser privileges.

4.5.3 pgcopydb copy extensions

pgcopydb copy extensions - Copy the extensions from the source instance to the target instance

The command pgcopydb copy extensions gets a list of the extensions installed on the source database, and for
each of them run the SQL command CREATE EXTENSION IF NOT EXISTS.

pgcopydb copy extensions: Copy the extensions from the source instance to the target instance
usage: pgcopydb copy extensions --source ... --target ...

--source
--target
--dir

Postgres URI to the source database
Postgres URI to the target database
Work directory to use

4.5. pgcopydb copy 33

pgcopydb, Release 0.9

When copying extensions, this command also takes care of copying any Extension Configuration Tables user-data to
the target database.

4.5.4 pgcopydb copy schema

pgcopydb copy schema - Copy the database schema from source to target

The command pgcopydb copy schema implements the schema only section of the clone steps.

pgcopydb copy schema: Copy the database schema from source to target

usage: pgcopydb copy schema --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--filters <filename> Use the filters defined in <filename>
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot

4.5.5 pgcopydb copy data

pgcopydb copy data - Copy the data section from source to target

The command pgcopydb copy data implements the data section of the clone steps.

pgcopydb copy data: Copy the data section from source to target

usage: pgcopydb copy data --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--table-jobs Number of concurrent COPY jobs to run
--index-jobs Number of concurrent CREATE INDEX jobs to run
--drop-if-exists On the target database, clean-up from a previous run first
--no-owner Do not set ownership of objects to match the original database
--skip-large-objects Skip copying large objects (blobs)
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot

Note: The current command line has both the commands pgcopydb copy table-dataand pgcopydb copy data,
which are looking quite similar but implement different steps. Be careful for now. This will change later.

The pgcopydb copy data command implements the following steps:

pgcopydb copy table-data
pgcopydb copy blobs
pgcopydb copy indexes
pgcopydb copy constraints
pgcopydb copy sequences
vacuumdb -z

D R]

Those steps are actually done concurrently to one another when that’s possible, in the same way as the main command
pgcopydb clone would. The only difference is that the pgcopydb clone command also prepares and finishes the
schema parts of the operations (pre-data, then post-data), which the pgcopydb copy data command ignores.

34 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/extend-extensions.html#EXTEND-EXTENSIONS-CONFIG-TABLES

pgcopydb, Release 0.9

4.5.6 pgcopydb copy table-data

pgcopydb copy table-data - Copy the data from all tables in database from source to target

The command pgcopydb copy table-data fetches the list of tables from the source database and runs a COPY TO
command on the source database and sends the result to the target database using a COPY FROM command directly,
avoiding disks entirely.

pgcopydb copy table-data: Copy the data from all tables in database from source to target

usage: pgcopydb copy table-data --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--table-jobs Number of concurrent COPY jobs to run
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot

4.5.7 pgcopydb copy blobs

pgcopydb copy blobs - Copy the blob data from ther source database to the target

The command pgcopydb copy blobs fetches list of large objects (aka blobs) from the source database and copies
their data parts to the target database. By default the command assumes that the large objects metadata have already
been taken care of, because of the behaviour of pg_dump --section=pre-data.

pgcopydb copy blobs: Copy the blob data from ther source database to the target

usage: pgcopydb copy blobs --source ... --target ...
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot

--drop-if-exists On the target database, drop and create large objects

4.5.8 pgcopydb copy sequences

pgcopydb copy sequences - Copy the current value from all sequences in database from source to target

The command pgcopydb copy sequences fetches the list of sequences from the source database, then for each
sequence fetches the last_value and is_called properties the same way pg_dump would on the source database,
and then for each sequence call pg_catalog.setval () on the target database.

pgcopydb copy sequences: Copy the current value from all sequences in database from source to target

usage: pgcopydb copy sequences --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source database

4.5. pgcopydb copy 35

pgcopydb, Release 0.9

4.5.9 pgcopydb copy indexes

pgcopydb copy indexes - Create all the indexes found in the source database in the target

The command pgcopydb copy indexes fetches the list of indexes from the source database and runs each index
CREATE INDEX statement on the target database. The statements for the index definitions are modified to include IF
NOT EXISTS and allow for skipping indexes that already exist on the target database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target

usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--index-jobs Number of concurrent CREATE INDEX jobs to run
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source database

4.5.10 pgcopydb copy constraints

pgcopydb copy constraints - Create all the constraints found in the source database in the target

The command pgcopydb copy constraints fetches the list of indexes from the source database and runs each index
ALTER TABLE ... ADD CONSTRAINT ... USING INDEX statement on the target database.

The indexes must already exist, and the command will fail if any constraint is found existing already on the target
database.

pgcopydb copy indexes: Create all the indexes found in the source database in the target

usage: pgcopydb copy indexes --source ... --target ... [--table-jobs ... --index-jobs ...]
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source data

4.5.11 Description
These commands allow implementing a specific step of the pgcopydb operations at a time. It’s useful mainly for
debugging purposes, though some advanced and creative usage can be made from the commands.

The target schema is not created, so it needs to have been taken care of first. It is possible to use the commands pgcopydb
dump schema and then pgcopydb restore pre-data to prepare your target database.

To implement the same operations as a pgcopydb clone command would, use the following recipe:

©»

export PGCOPYDB_SOURCE_PGURI="postgres://user@source/dbname"
export PGCOPYDB_TARGET_PGURI="postgres://user@target/dbname"

©

pgcopydb dump schema

pgcopydb restore pre-data --resume --not-consistent
pgcopydb copy table-data --resume --not-consistent
pgcopydb copy sequences --resume --not-consistent
pgcopydb copy indexes --resume --not-consistent
pgcopydb copy constraints --resume --not-consistent
vacuumdb -z

pgcopydb restore post-data --resume --not-consistent

L A R I I Y

The main pgcopydb clone is still better at concurrency than doing those steps manually, as it will create the indexes
for any given table as soon as the table-data section is finished, without having to wait until the last table-data has been
copied over. Same applies to constraints, and then vacuum analyze.

36 Chapter 4. Manual Pages

pgcopydb, Release 0.9

4.5.12 Options

The following options are available to pgcopydb copy sub-commands:

--source

--target

--dir

--table-jobs

--index-jobs

Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

Connection string to the target Postgres instance.

During its normal operations pgcopydb creates a lot of temporary files to track
sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR} /pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

How many tables can be processed in parallel.

This limit only applies to the COPY operations, more sub-processes will be run-
ning at the same time that this limit while the CREATE INDEX operations are
in progress, though then the processes are only waiting for the target Postgres
instance to do all the work.

How many indexes can be built in parallel, globally. A good option is to set this
option to the count of CPU cores that are available on the Postgres target system,
minus some cores that are going to be used for handling the COPY operations.

--split-tables-larger-than Allow Same-table Concurrency when processing the source database. This

--skip-large-objects

--restart

--resume

--not-consistent

environment variable value is expected to be a byte size, and bytes units B, kB,
MB, GB, TB, PB, and EB are known.

Skip copying large objects, also known as blobs, when copying the data from the
source database to the target database.

When running the pgcopydb command again, if the work directory already con-
tains information from a previous run, then the command refuses to proceed and
delete information that might be used for diagnostics and forensics.

In that case, the --restart option can be used to allow pgcopydb to delete traces
from a previous run.

When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is possible to
resume the database migration.

When resuming activity from a previous run, table data that was fully copied over
to the target server is not sent again. Table data that was interrupted during the
COPY has to be started from scratch even when using --resume: the COPY
command in Postgres is transactional and was rolled back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a --resume run
only if known to have run through to completion on the previous one.

Finally, using --resume requires the use of --not-consistent.

In order to be consistent, pgcopydb exports a Postgres snapshot by calling the
pg_export_snapshot() function on the source database server. The snapshot is
then re-used in all the connections to the source database server by using the SET
TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

4.5. pgcopydb copy

37

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE

pgcopydb, Release 0.9

Saves the transaction’s current snapshot and returns a text string iden-
tifying the snapshot. This string must be passed (outside the database)
to clients that want to import the snapshot. The snapshot is available
for import only until the end of the transaction that exported it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous run,
it is possible to resume operations, but the snapshot that was exported does not
exists anymore. The pgcopydb command can only resume operations with a new
snapshot, and thus can not ensure consistency of the whole data set, because each
run is now using their own snapshot.

--snapshot Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already ex-
ported snapshot.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.
--trace Set current verbosity to TRACE level.
--quiet Set current verbosity to ERROR level.

4.5.13 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TABLE_JOBS

Number of concurrent jobs allowed to run COPY operations in parallel. When --table-jobs is ommitted
from the command line, then this environment variable is used.

PGCOPYDB_INDEX_JOBS

Number of concurrent jobs allowed to run CREATE INDEX operations in parallel. When --index-jobs
is ommitted from the command line, then this environment variable is used.

PGCOPYDB_SPLIT_TABLES_LARGER_THAN

Allow Same-table Concurrency when processing the source database. This environment variable value is
expected to be a byte size, and bytes units B, kB, MB, GB, TB, PB, and EB are known.

When --split-tables-larger-than is ommitted from the command line, then this environment vari-
able is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean) then pgcopydb uses the pg_restore options
--clean --if-exists when creating the schema on the target Postgres instance.

PGCOPYDB_SNAPSHOT

Postgres snapshot identifier to re-use, see also --snapshot.

38 Chapter 4. Manual Pages

pgcopydb, Release 0.9

TMPDIR

The pgcopydb command creates all its work files and directories in ${TMPDIR}/pgcopydb, and defaults
to /tmp/pgcopydb.

4.5.14 Examples

Let’s export the Postgres databases connection strings to make it easy to re-use them all along:

$ export PGCOPYDB_SOURCE_PGURI="port=54311 host=localhost dbname=pgloader"
$ export PGCOPYDB_TARGET_PGURI="port=54311 dbname=plop"

Now, first dump the schema:

$ pgcopydb dump schema

15:24:24 75511 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:24 75511 WARN Directory "/tmp/pgcopydb"” already exists: removing it entirely

15:24:24 75511 INFO Dumping database from "port=54311 host=localhost dbname=pgloader"

15:24:24 75511 INFO Dumping database into directory "/tmp/pgcopydb”

15:24:24 75511 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
15:24:24 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/pgcopydb/
—sschema/pre.dump 'port=54311 host=localhost dbname=pgloader’

15:24:25 75511 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/pgcopydb/
—>schema/post.dump 'port=54311 host=localhost dbname=pgloader’

Now restore the pre-data schema on the target database, cleaning up the already existing objects if any, which allows
running this test scenario again and again. It might not be what you want to do in your production target instance
though!

PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore pre-data --no-owner

15:24:29 75591 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:29 75591 INFO Restoring database from "/tmp/pgcopydb”

15:24:29 75591 INFO Restoring database into "port=54311 dbname=plop"

15:24:29 75591 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:29 75591 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --clean..
«»--if-exists --no-owner /tmp/pgcopydb/schema/pre.dump

Then copy the data over:

$ pgcopydb copy table-data --resume --not-consistent

15:24:36 75688 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO [TARGET] Copying database into "port=54311 dbname=plop"

15:24:36 75688 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:36 75688 INFO STEP 3: copy data from source to target in sub-processes

15:24:36 75688 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:36 75688 INFO Fetched information for 56 tables

Step Connection Duration Concurrency

Dump Schema source Oms 1

Prepare Schema target Oms 1

COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both Oms 4 + 4
COPY (cumulative) both 1s140 4

CREATE INDEX (cumulative) target Oms 4

Finalize Schema target Oms 1

Total Wall Clock Duration both 2s143 4 + 4

And now create the indexes on the target database, using the index definitions from the source database:

$ pgcopydb copy indexes --resume --not-consistent

15:24:40 75918 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO [TARGET] Copying database into "port=54311 dbname=plop"

15:24:40 75918 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:40 75918 INFO STEP 4: create indexes in parallel

15:24:40 75918 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"
15:24:40 75918 INFO Fetched information for 56 tables

15:24:40 75930 INFO Creating 2 indexes for table "csv"."partial"

(continues on next page)

4.5. pgcopydb copy 39

pgcopydb,

Release 0.9

(continued from previous page)

15:24:40 75922 INFO Creating 1 index for table "csv"."track"
15:24:40 75931 INFO Creating 1 index for table "err"."errors"
15:24:40 75928 INFO Creating 1 index for table "csv"."blocks"
15:24:40 75925 INFO Creating 1 index for table "public"."track_full"
15:24:40 76037 INFO CREATE INDEX IF NOT EXISTS partial_b_idx ON csv.partial USING btree (b);
15:24:40 76036 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_pkey ON csv.track USING btree (trackid);
15:24:40 76035 INFO CREATE UNIQUE INDEX IF NOT EXISTS partial_a_key ON csv.partial USING btree (a);
15:24:40 76038 INFO CREATE UNIQUE INDEX IF NOT EXISTS errors_pkey ON err.errors USING btree (a);
15:24:40 75987 INFO Creating 1 index for table "public"."xzero"
15:24:40 75969 INFO Creating 1 index for table "public"."csv_escape_mode"
15:24:40 75985 INFO Creating 1 index for table "public"."udc"
15:24:40 75965 INFO Creating 1 index for table "public"."allcols"
15:24:40 75981 INFO Creating 1 index for table "public".'"serial"
15:24:40 76039 INFO CREATE INDEX IF NOT EXISTS blocks_ip4r_idx ON csv.blocks USING gist (iprange);
15:24:40 76040 INFO CREATE UNIQUE INDEX IF NOT EXISTS track_full_pkey ON public.track_full USING btree (trackid);
15:24:40 75975 INFO Creating 1 index for table "public"."nullif"
15:24:40 76046 INFO CREATE UNIQUE INDEX IF NOT EXISTS xzero_pkey ON public.xzero USING btree (a);
15:24:40 76048 INFO CREATE UNIQUE INDEX IF NOT EXISTS udc_pkey ON public.udc USING btree (b);
15:24:40 76047 INFO CREATE UNIQUE INDEX IF NOT EXISTS csv_escape_mode_pkey ON public.csv_escape_mode USING btree (id);
15:24:40 76049 INFO CREATE UNIQUE INDEX IF NOT EXISTS allcols_pkey ON public.allcols USING btree (a);
15:24:40 76052 INFO CREATE UNIQUE INDEX IF NOT EXISTS nullif pkey ON public."nullif" USING btree (id);
15:24:40 76050 INFO CREATE UNIQUE INDEX IF NOT EXISTS serial_pkey ON public.serial USING btree (a);
Step Connection Duration Concurrency
Dump Schema source Oms 1
Prepare Schema target Oms 1
COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both Oms 4+ 4
COPY (cumulative) both 619ms 4
CREATE INDEX (cumulative) target 1s023 4
Finalize Schema target Oms 1
Total Wall Clock Duration both 400ms 4 + 4

Now re-create the constraints (primary key, unique constraints) from the source database schema into the target
database:

$ pgcopydb copy constraints --resume --not-consistent

15:24:43 76095 INFO [SOURCE] Copying database from "port=54311 host=localhost dbname=pgloader"

15:24:43 76095 INFO [TARGET] Copying database into "port=54311 dbname=plop"

15:24:43 76095 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:43 76095 INFO STEP 4: create constraints

15:24:43 76095 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"

15:24:43 76095 INFO Fetched information for 56 tables

15:24:43 76099 INFO ALTER TABLE "csv"."track" ADD CONSTRAINT "track_pkey" PRIMARY KEY USING INDEX "track_pkey";

15:24:43 76107 INFO ALTER TABLE "csv"."partial" ADD CONSTRAINT "partial_a_key" UNIQUE USING INDEX "partial_a_key";

15:24:43 76102 INFO ALTER TABLE "public"."track_full" ADD CONSTRAINT "track_full pkey" PRIMARY KEY USING INDEX "track_full_
—pkey";

15:24:43 76142 INFO ALTER TABLE "public"."allcols" ADD CONSTRAINT "allcols_pkey" PRIMARY KEY USING INDEX "allcols_pkey";
15:24:43 76157 INFO ALTER TABLE "public"."serial" ADD CONSTRAINT "serial_pkey" PRIMARY KEY USING INDEX "serial_pkey";
15:24:43 76161 INFO ALTER TABLE "public"."xzero" ADD CONSTRAINT "xzero_pkey" PRIMARY KEY USING INDEX "xzero_pkey";

15:24:43 76146 INFO ALTER TABLE "public"."csv_escape_mode" ADD CONSTRAINT "csv_escape_mode_pkey" PRIMARY KEY USING INDEX "csv_
—sescape_mode_pkey";

15:24:43 76154 INFO ALTER TABLE "public"."nullif" ADD CONSTRAINT "nullif_pkey" PRIMARY KEY USING INDEX "nullif_ pkey";
15:24:43 76159 INFO ALTER TABLE "public"."udc" ADD CONSTRAINT "udc_pkey" PRIMARY KEY USING INDEX "udc_pkey";

15:24:43 76108 INFO ALTER TABLE "err"."errors" ADD CONSTRAINT "errors_pkey" PRIMARY KEY USING INDEX "errors_pkey";
Step Connection Duration Concurrency
Dump Schema source Oms 1
Prepare Schema target Oms 1
COPY, INDEX, CONSTRAINTS, VACUUM (wall clock) both Oms 4 + 4
COPY (cumulative) both 605ms 4
CREATE INDEX (cumulative) target 1s023 4
Finalize Schema target Oms 1
Total Wall Clock Duration both 415ms 4 + 4

The next step is a VACUUM ANALYZE on each table that’s been just filled-in with the data, and for that we can just
use the vacuumdb command from Postgres:

$ vacuumdb --analyze --dbname "$PGCOPYDB_TARGET_PGURI" --jobs 4
vacuumdb: vacuuming database "plop"

40 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/app-vacuumdb.html

pgcopydb, Release 0.9

Finally we can restore the post-data section of the schema:

$ pgcopydb restore post-data --resume --not-consistent

15:24:50 76328 INFO Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

15:24:50 76328 INFO Restoring database from "/tmp/pgcopydb"

15:24:50 76328 INFO Restoring database into "port=54311 dbname=plop"

15:24:50 76328 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
15:24:50 76328 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54311 dbname=plop' --use-
—1list /tmp/pgcopydb/schema/post.list /tmp/pgcopydb/schema/post.dump

4.6 pgcopydb dump

pgcopydb dump - Dump database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb dump
schema Dump source database schema as custom files in target directory
pre-data Dump source database pre-data schema as custom files in target directory
post-data Dump source database post-data schema as custom files in target directory
roles Dump source database roles as custome file in work directory

4.6.1 pgcopydb dump schema

pgcopydb dump schema - Dump source database schema as custom files in target directory

The command pgcopydb dump schema uses pg_dump to export SQL schema definitions from the given source Post-
gres instance.

pgcopydb dump schema: Dump source database schema as custom files in target directory

usage: pgcopydb dump schema --source <URI> --target <dir>
--source Postgres URI to the source database
--target Directory where to save the dump files
--dir Work directory to use
--snapshot Use snapshot obtained with pg_export_snapshot

4.6.2 pgcopydb dump pre-data

pgcopydb dump pre-data - Dump source database pre-data schema as custom files in target directory

The command pgcopydb dump pre-data uses pg_dump to export SQL schema pre-data definitions from the given
source Postgres instance.

pgcopydb dump pre-data: Dump source database pre-data schema as custom files in target directory

usage: pgcopydb dump schema --source <URI> --target <dir>
--source Postgres URI to the source database
--target Directory where to save the dump files
--dir Work directory to use
--snapshot Use snapshot obtained with pg_export_snapshot

4.6. pgcopydb dump 41

pgcopydb, Release 0.9

4.6.3 pgcopydb dump post-data

pgcopydb dump post-data - Dump source database post-data schema as custom files in target directory

The command pgcopydb dump post-data uses pg_dump to export SQL schema post-data definitions from the given
source Postgres instance.

pgcopydb dump post-data: Dump source database post-data schema as custom files in target directory

usage: pgcopydb dump schema --source <URI> --target <dir>
--source Postgres URI to the source database
--target Directory where to save the dump files
--dir Work directory to use
--snapshot Use snapshot obtained with pg_export_snapshot

4.6.4 pgcopydb dump roles

pgcopydb dump roles - Dump source database roles as custome file in work directory

The command pgcopydb dump roles uses pg_dumpall —roles-only to export SQL definitions of the roles found on
the source Postgres instance.

pgcopydb dump roles: Dump source database roles as custome file in work directory

usage: pgcopydb dump roles --source <URI>
--source Postgres URI to the source database
--target Directory where to save the dump files
--dir Work directory to use

The pg_dumpall --roles-only is used to fetch the list of roles from the source database, and this command includes
support for passwords. As a result, this operation requires the superuser privileges.

4.6.5 Description
The pgcopydb dump schema command implements the first step of the full database migration and fetches the schema
definitions from the source database.

When the command runs, it calls pg_dump to get first the pre-data schema output in a Postgres custom file, and then
again to get the post-data schema output in another Postgres custom file.

The output files are written to the schema sub-directory of the --target directory.

The pgcopydb dump pre-data and pgcopydb dump post-data are limiting their action to respectively the pre-
data and the post-data sections of the pg_dump.

4.6.6 Options

The following options are available to pgcopydb dump schema:

--source Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

--target Connection string to the target Postgres instance.

--dir During its normal operations pgcopydb creates a lot of temporary files to track

sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR} /pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

42 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

pgcopydb, Release 0.9

--snapshot Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already ex-
ported snapshot.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.
--trace Set current verbosity to TRACE level.
--quiet Set current verbosity to ERROR level.

4.6.7 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

4.6.8 Examples

First, using pgcopydb dump schema

$ pgcopydb dump schema --source "port=5501 dbname=demo" --target /tmp/target

09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"

09:35:21 3926 INFO Dumping database into directory "/tmp/target”

09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"

09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"

09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/
—sschema/pre.dump 'port=5501 dbname=demo"'

09:35:22 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/
<>schema/post.dump 'port=5501 dbname=demo'

Once the previous command is finished, the pg_dump output files can be found in /tmp/target/schema and are
named pre.dump and post.dump. Other files and directories have been created.

$ find /tmp/target
/tmp/target
/tmp/target/pgcopydb.pid
/tmp/target/schema
/tmp/target/schema/post.dump
/tmp/target/schema/pre.dump
/tmp/target/run
/tmp/target/run/tables
/tmp/target/run/indexes

Then we have almost the same thing when using the other forms.

We can see that pgcopydb dump pre-data only does the pre-data section of the dump.

$ pgcopydb dump pre-data --source "port=5501 dbname=demo" --target /tmp/target

09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"

09:35:21 3926 INFO Dumping database into directory "/tmp/target"

09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"

09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"

09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section pre-data --file /tmp/target/
—sschema/pre.dump 'port=5501 dbname=demo"'

And then pgcopydb dump post-data only does the post-data section of the dump.

4.6. pgcopydb dump 43

pgcopydb, Release 0.9

$ pgcopydb dump post-data --source "port=5501 dbname=demo" --target /tmp/target

09:35:21 3926 INFO Dumping database from "port=5501 dbname=demo"

09:35:21 3926 INFO Dumping database into directory "/tmp/target"

09:35:21 3926 INFO Found a stale pidfile at "/tmp/target/pgcopydb.pid"

09:35:21 3926 WARN Removing the stale pid file "/tmp/target/pgcopydb.pid"

09:35:21 3926 INFO Using pg_dump for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_dump"
09:35:21 3926 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_dump -Fc --section post-data --file /tmp/target/
—sschema/post.dump 'port=5501 dbname=demo'

4.7 pgcopydb restore

pgcopydb restore - Restore database objects into a Postgres instance

This command prefixes the following sub-commands:

pgcopydb restore

schema Restore a database schema from custom files to target database
pre-data Restore a database pre-data schema from custom file to target database
post-data Restore a database post-data schema from custom file to target database
roles Restore database roles from SQL file to target database

parse-list Parse pg_restore --list output from custom file

4.7.1 pgcopydb restore schema

pgcopydb restore schema - Restore a database schema from custom files to target database

The command pgcopydb restore schema uses pg_restore to create the SQL schema definitions from the given
pgcopydb dump schema export directory. This command is not compatible with using Postgres files directly, it must

be fed with the directory output from the pgcopydb dump ... commands.
pgcopydb restore schema: Restore a database schema from custom files to target database
usage: pgcopydb restore schema --dir <dir> [--source <URI>] --target <URI>

--source Postgres URI to the source database

--target Postgres URI to the target database

--dir Work directory to use

--drop-if-exists On the target database, clean-up from a previous run first

--no-owner Do not set ownership of objects to match the original database

--no-acl Prevent restoration of access privileges (grant/revoke commands) .

--no-comments Do not output commands to restore comments

--filters <filename> Use the filters defined in <filename>

--restart Allow restarting when temp files exist already

--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source database

4.7.2 pgcopydb restore pre-data

pgcopydb restore pre-data - Restore a database pre-data schema from custom file to target database

The command pgcopydb restore pre-data uses pg_restore to create the SQL schema definitions from the given
pgcopydb dump schema export directory. This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore pre-data: Restore a database pre-data schema from custom file to target database
usage: pgcopydb restore pre-data --dir <dir> [--source <URI>] --target <URI>

--source Postgres URI to the source database

--target Postgres URI to the target database

--dir Work directory to use

--drop-if-exists On the target database, clean-up from a previous run first
--no-owner Do not set ownership of objects to match the original database
--no-acl Prevent restoration of access privileges (grant/revoke commands) .

(continues on next page)

44 Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

--no-comments Do not output commands to restore comments
--filters <filename> Use the filters defined in <filename>

--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database

4.7.3 pgcopydb restore post-data

pgcopydb restore post-data - Restore a database post-data schema from custom file to target database

The command pgcopydb restore post-data uses pg_restore to create the SQL schema definitions from the given
pgcopydb dump schema export directory. This command is not compatible with using Postgres files directly, it must
be fed with the directory output from the pgcopydb dump ... commands.

pgcopydb restore post-data: Restore a database post-data schema from custom file to target database
usage: pgcopydb restore post-data --dir <dir> [--source <URI>] --target <URI>

--source Postgres URI to the source database

--target Postgres URI to the target database

--dir Work directory to use

--no-owner Do not set ownership of objects to match the original database
--no-acl Prevent restoration of access privileges (grant/revoke commands) .
--no-comments Do not output commands to restore comments

--filters <filename> Use the filters defined in <filename>

--restart Allow restarting when temp files exist already

--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source database

4.7.4 pgcopydb restore roles

pgcopydb restore roles - Restore database roles from SQL file to target database

The command pgcopydb restore roles runs the commands from the SQL script obtained from the command
pgcopydb dump roles. Roles that already exist on the target database are skipped.

The pg_dumpall command issues two lines per role, the first one is a CREATE ROLE SQL command, the second one
is an ALTER ROLE SQL command. Both those lines are skipped when the role already exists on the target database.

pgcopydb restore roles: Restore database roles from SQL file to target database

usage: pgcopydb restore roles --dir <dir> [--source <URI>] --target <URI>
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use

4.7.5 pgcopydb restore parse-list

pgcopydb restore parse-list - Parse pg_restore —list output from custom file

The command pgcopydb restore parse-list outputs pg_restore to list the archive catalog of the custom file for-
mat file that has been exported for the post-data section.

When using the --filters option, then the source database connection is used to grab all the dependend objects that
should also be filtered, and the output of the command shows those pg_restore catalog entries commented out.

A pg_restore archive catalog entry is commented out when its line starts with a semi-colon character (;).

pgcopydb restore parse-list: Parse pg_restore --list output from custom file
usage: pgcopydb restore parse-list --dir <dir> [--source <URI>] --target <URI>

--source Postgres URI to the source database

(continues on next page)

4.7. pgcopydb restore 45

pgcopydb, Release 0.9

(continued from previous page)

--target Postgres URI to the target database

--dir Work directory to use

--filters <filename> Use the filters defined in <filename>
--skip-extensions Skip restoring extensions

--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database

4.7.6 Description

The pgcopydb restore schema command implements the creation of SQL objects in the target database, second

and last steps of a full database migration.

When the command runs, it calls pg_restore on the files found at the expected location within the --target directory,

which has typically been created with the pgcopydb dump schema command.

The pgcopydb restore pre-data and pgcopydb restore post-data are limiting their action to respectively

the pre-data and the post-data files in the source directory..

4.7.7 Options

The following options are available to pgcopydb restore schema:

--source

--target

--dir

--drop-if-exists

=--no-owner

--filters <filename>

Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

Connection string to the target Postgres instance.

During its normal operations pgcopydb creates a lot of temporary files to track
sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR} /pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

When restoring the schema on the target Postgres instance, pgcopydb actually
uses pg_restore. When this options is specified, then the following pg_restore
options are also used: --clean --if-exists.

This option is useful when the same command is run several times in a row, either
to fix a previous mistake or for instance when used in a continuous integration
system.

This option causes DROP TABLE and DROP INDEX and other DROP commands to
be used. Make sure you understand what you’re doing here!

Do not output commands to set ownership of objects to match the original
database. By default, pg_restore issues ALTER OWNER or SET SESSION
AUTHORIZATION statements to set ownership of created schema elements. These
statements will fail unless the initial connection to the database is made by a
superuser (or the same user that owns all of the objects in the script). With
--no-owner, any user name can be used for the initial connection, and this user
will own all the created objects.

This option allows to exclude table and indexes from the copy operations. See Fil-
tering for details about the expected file format and the filtering options available.

46

Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

pgcopydb, Release 0.9

--skip-extensions

--restart

--resume

--not-consistent

--snapshot

--verbose

--debug

--trace

Skip copying extensions from the source database to the target database.

When used, schema that extensions depend-on are also skipped: it is expected that
creating needed extensions on the target system is then the responsibility of an-
other command (such as pgcopydb copy extensions), and schemas that extensions
depend-on are part of that responsibility.

Because creating extensions require superuser, this allows a multi-steps approach
where extensions are dealt with superuser privileges, and then the rest of the pg-
copydb operations are done without superuser privileges.

When running the pgcopydb command again, if the work directory already con-
tains information from a previous run, then the command refuses to proceed and
delete information that might be used for diagnostics and forensics.

In that case, the --restart option can be used to allow pgcopydb to delete traces
from a previous run.

When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is possible to
resume the database migration.

When resuming activity from a previous run, table data that was fully copied over
to the target server is not sent again. Table data that was interrupted during the
COPY has to be started from scratch even when using --resume: the COPY
command in Postgres is transactional and was rolled back.

Same reasonning applies to the CREATE INDEX commands and ALTER TABLE
commands that pgcopydb issues, those commands are skipped on a --resume run
only if known to have run through to completion on the previous one.

Finally, using --resume requires the use of --not-consistent.

In order to be consistent, pgcopydb exports a Postgres snapshot by calling the
pg_export_snapshot() function on the source database server. The snapshot is
then re-used in all the connections to the source database server by using the SET
TRANSACTION SNAPSHOT command.

Per the Postgres documentation about pg_export_snapshot:

Saves the transaction’s current snapshot and returns a text string iden-
tifying the snapshot. This string must be passed (outside the database)
to clients that want to import the snapshot. The snapshot is available
for import only until the end of the transaction that exported it.

Now, when the pgcopydb process was interrupted (or crashed) on a previous run,
it is possible to resume operations, but the snapshot that was exported does not
exists anymore. The pgcopydb command can only resume operations with a new
snapshot, and thus can not ensure consistency of the whole data set, because each
run is now using their own snapshot.

Instead of exporting its own snapshot by calling the PostgreSQL function
pg_export_snapshot() it is possible for pgcopydb to re-use an already ex-
ported snapshot.

Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

Set current verbosity to DEBUG level.

Set current verbosity to TRACE level.

4.7. pgcopydb restore

47

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE

pgcopydb, Release 0.9

--quiet Set current verbosity to ERROR level.

4.7.8 Environment

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_DROP_IF_EXISTS

When true (or yes, or on, or 1, same input as a Postgres boolean) then pgcopydb uses the pg_restore options
--clean --if-exists when creating the schema on the target Postgres instance.

4.7.9 Examples

First, using pgcopydb restore schema

$ PGCOPYDB_DROP_IF_EXISTS=on pgcopydb restore schema --source /tmp/target/ --target "port=54314 dbname=demo"

09:54:37 20401 INFO Restoring database from "/tmp/target/"

09:54:37 20401 INFO Restoring database into "port=54314 dbname=demo"

09:54:37 20401 INFO Found a stale pidfile at "/tmp/target//pgcopydb.pid"

09:54:37 20401 WARN Removing the stale pid file "/tmp/target//pgcopydb.pid"

09:54:37 20401 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
09:54:37 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean,.
—s--if-exists /tmp/target//schema/pre.dump

09:54:38 20401 INFO /Applications/Postgres.app/Contents/Versions/12/bin/pg_restore --dbname 'port=54314 dbname=demo' --clean,.
«s--if-exists --use-list /tmp/target//schema/post.list /tmp/target//schema/post.dump

Then the pgcopydb restore pre-data and pgcopydb restore post-data would look the same with just a sin-
gle call to pg_restore instead of the both of them.

Using pgcopydb restore parse-list it’s possible to review the filtering options and see how pg_restore catalog
entries are being commented-out.

$ cat ./tests/filtering/include.ini
[include-only-table]

public.actor

public.category

public.film

public.film_actor
public.film_category
public.language

public.rental

[exclude-index]
public.idx_store_id_film_id

[exclude-table-data]
public.rental

$ pgcopydb restore parse-list --dir /tmp/pagila/pgcopydb --resume --not-consistent --filters ./tests/filtering/include.ini
11:41:22 75175 INFO Running pgcopydb version 0.5.8.ge0®d2038 from "/Users/dim/dev/PostgreSQL/pgcopydb/./src/bin/pgcopydb/
—spgcopydb”

11:41:22 75175 INFO [SOURCE] Restoring database from "postgres://@:54311/pagila?"

11:41:22 75175 INFO [TARGET] Restoring database into "postgres://@:54311/plop?"

11:41:22 75175 INFO Using work dir "/tmp/pagila/pgcopydb"

11:41:22 75175 INFO Removing the stale pid file "/tmp/pagila/pgcopydb/pgcopydb.pid"

11:41:22 75175 INFO Work directory "/tmp/pagila/pgcopydb” already exists

11:41:22 75175 INFO Schema dump for pre-data and post-data section have been done

11:41:22 75175 INFO Restoring database from existing files at "/tmp/pagila/pgcopydb"

11:41:22 75175 INFO Using pg_restore for Postgres "12.9" at "/Applications/Postgres.app/Contents/Versions/12/bin/pg_restore"
11:41:22 75175 INFO Exported snapshot "00000003-0003209A-1" from the source database

3242; 2606 317973 CONSTRAINT public actor actor_pkey postgres

;3258; 2606 317975 CONSTRAINT public address address_pkey postgres

3245; 2606 317977 CONSTRAINT public category category_pkey postgres

;3261; 2606 317979 CONSTRAINT public city city_pkey postgres

;3264; 2606 317981 CONSTRAINT public country country_pkey postgres

(continues on next page)

48 Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

;3237; 2606 317983 CONSTRAINT public customer customer_pkey postgres

3253; 2606 317985 CONSTRAINT public film actor film_actor_pkey postgres
3256; 2606 317987 CONSTRAINT public film_category film_category_pkey postgres
3248; 2606 317989 CONSTRAINT public film film_pkey postgres

;3267; 2606 317991 CONSTRAINT public inventory inventory_pkey postgres

3269; 2606 317993 CONSTRAINT public language language_pkey postgres

3293; 2606 317995 CONSTRAINT public rental rental_pkey postgres

;3295; 2606 317997 CONSTRAINT public staff staff_pkey postgres

;3298; 2606 317999 CONSTRAINT public store store_pkey postgres

3246; 1259 318000 INDEX public film_fulltext_idx postgres

3243; 1259 318001 INDEX public idx_actor_last_name postgres

;3238; 1259 318002 INDEX public idx_fk_address_id postgres

;3259; 1259 318003 INDEX public idx_fk_city_id postgres

;3262; 1259 318004 INDEX public idx_fk_country_id postgres

;3270; 1259 318005 INDEX public idx_fk_customer_id postgres

3254; 1259 318006 INDEX public idx_fk_film_id postgres

3290; 1259 318007 INDEX public idx_fk_inventory_id postgres

3249; 1259 318008 INDEX public idx_fk_language_id postgres

3250; 1259 318009 INDEX public idx_fk_original_language_id postgres

;3272; 1259 318010 INDEX public idx_fk_payment_p2020_01_customer_id postgres
;3271; 1259 318011 INDEX public idx_fk_staff id postgres

;3273; 1259 318012 INDEX public idx_fk_payment_p2020_01_staff_id postgres
;3275; 1259 318013 INDEX public idx_fk_payment_p2020_02_customer_id postgres
;3276; 1259 318014 INDEX public idx_fk_payment_p2020_02_staff_id postgres
;3278; 1259 318015 INDEX public idx_fk_payment_p2020_03_customer_id postgres
;3279; 1259 318016 INDEX public idx_fk_payment_p2020_03_staff_id postgres
;3281; 1259 318017 INDEX public idx_fk_payment_p2020_04_customer_id postgres
;3282; 1259 318018 INDEX public idx_fk_payment_p2020_04_staff_id postgres
;3284; 1259 318019 INDEX public idx_fk_payment_p2020_05_customer_id postgres
;3285; 1259 318020 INDEX public idx_fk_payment_p2020_05_staff_id postgres
;3287; 1259 318021 INDEX public idx_fk_payment_p2020_06_customer_id postgres
;3288; 1259 318022 INDEX public idx_fk_payment_p2020_06_staff_id postgres
;3239; 1259 318023 INDEX public idx_fk_store_id postgres

;3240; 1259 318024 INDEX public idx_last_name postgres

;3265; 1259 318025 INDEX public idx_store_id_film_id postgres

3251; 1259 318026 INDEX public idx_title postgres

;3296; 1259 318027 INDEX public idx_ung_manager_staff_id postgres

3291; 1259 318028 INDEX public idx_ung_rental_rental_date_inventory_id_customer_id postgres
;3274; 1259 318029 INDEX public payment_p2020_01_customer_id_idx postgres
;3277; 1259 318030 INDEX public payment_p2020_02_customer_id_idx postgres
;3280; 1259 318031 INDEX public payment_p2020_03_customer_id_idx postgres
;3283; 1259 318032 INDEX public payment_p2020_04_customer_id_idx postgres
;3286; 1259 318033 INDEX public payment_p2020_05_customer_id_idx postgres
;3289; 1259 318034 INDEX public payment_p2020_06_customer_id_idx postgres
;3299; 0 O INDEX ATTACH public idx_fk_payment_p2020_01_staff_ id postgres

;3301; O ® INDEX ATTACH public idx_fk_payment_p2020_02_staff_id postgres
;3303; 0 0 INDEX ATTACH public idx_fk_payment_p2020_03_staff_id postgres
;3305; O O INDEX ATTACH public idx_fk_payment_p2020_04_staff_id postgres
;3307; O ® INDEX ATTACH public idx_fk_payment_p2020_05_staff_ id postgres
;3309; O ® INDEX ATTACH public idx_fk_payment_p2020_06_staff_id postgres
;3300; ® ® INDEX ATTACH public payment_p2020_01_customer_id_idx postgres
;3302; 0 O INDEX ATTACH public payment_p2020_02_customer_id_idx postgres
;3304; 0 ® INDEX ATTACH public payment_p2020_03_customer_id_idx postgres
;3306; O ® INDEX ATTACH public payment_p2020_04_customer_id_idx postgres
;3308; 0 O INDEX ATTACH public payment_p2020_05_customer_id_idx postgres

;3310; ® ® INDEX ATTACH public payment_p2020_06_customer_id_idx postgres

3350; 2620 318035 TRIGGER public film film_fulltext_trigger postgres

3348; 2620 318036 TRIGGER public actor last_updated postgres

;3354; 2620 318037 TRIGGER public address last_updated postgres

3349; 2620 318038 TRIGGER public category last_updated postgres

;3355; 2620 318039 TRIGGER public city last_updated postgres

;3356; 2620 318040 TRIGGER public country last_updated postgres

;3347; 2620 318041 TRIGGER public customer last_updated postgres

3351; 2620 318042 TRIGGER public film last_updated postgres

3352; 2620 318043 TRIGGER public film_actor last_updated postgres

3353; 2620 318044 TRIGGER public film_category last_updated postgres

;3357; 2620 318045 TRIGGER public inventory last_updated postgres

3358; 2620 318046 TRIGGER public language last_updated postgres

3359; 2620 318047 TRIGGER public rental last_updated postgres

;3360; 2620 318048 TRIGGER public staff last_updated postgres

;3361; 2620 318049 TRIGGER public store last_updated postgres

;3319; 2606 318050 FK CONSTRAINT public address address_city_id_fkey postgres
;3320; 2606 318055 FK CONSTRAINT public city city_country_id_fkey postgres

;3311; 2606 318060 FK CONSTRAINT public customer customer_address_id_fkey postgres
;3312; 2606 318065 FK CONSTRAINT public customer customer_store_id_fkey postgres
3315; 2606 318070 FK CONSTRAINT public film_actor film_actor_actor_id_fkey postgres
3316; 2606 318075 FK CONSTRAINT public film_actor film_actor_film_id_fkey postgres
3317; 2606 318080 FK CONSTRAINT public film_category film_category_category_id_fkey postgres

(continues on next page)

e
N

pgcopydb restore 49

pgcopydb, Release 0.9

(continued from previous page)

3318; 2606 318085 FK CONSTRAINT public film_category film_category_film_id_fkey postgres
3313; 2606 318090 FK CONSTRAINT public film film_language_id_fkey postgres

3314; 2606 318095 FK CONSTRAINT public film film_ original_language_id_fkey postgres
inventory inventory_film_id_fkey postgres
inventory inventory_store_id_fkey postgres

;3321;
;3322;
;3323;
;3324;
;3325;
;3326;
;3327;
;3328;
;3329;
;3330;
;3331;
;3332;
;3333;
;3334;
;3335;
;3336;
;3337;
;3338;
;3339;
;3340;
;3341;
;3342;
;3343;
;3344;
;3345;
;3346;

2606
2606
2606
2606
2606

318100
318105
318110
318115
318120
318125
318130
318135
318140
318145
318150
318155
318160
318165
318170
318175
318180
318185
318190
318195
318200
318205
318210
318215
318220
318225

FK
FK
FK

CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

payment_p2020_01
payment_p2020_01
payment_p2020_01
payment_p2020_02
payment_p2020_02
payment_p2020_02
payment_p2020_03
payment_p2020_03
payment_p2020_03
payment_p2020_04
payment_p2020_04
payment_p2020_04
payment_p2020_05
payment_p2020_05
payment_p2020_05
payment_p2020_06
payment_p2020_06
payment_p2020_06

payment_p2020_01_customer_id_fkey postgres
payment_p2020_01_rental_id_fkey postgres
payment_p2020_01_staff_id_fkey postgres
payment_p2020_02_customer_id_fkey postgres
payment_p2020_02_rental_id_fkey postgres
payment_p2020_02_staff_id_fkey postgres
payment_p2020_03_customer_id_fkey postgres
payment_p2020_03_rental_id_fkey postgres
payment_p2020_03_staff_id_fkey postgres
payment_p2020_04_customer_id_fkey postgres
payment_p2020_04_rental_id_fkey postgres
payment_p2020_04_staff_id_fkey postgres
payment_p2020_05_customer_id_fkey postgres
payment_p2020_05_rental_id_fkey postgres
payment_p2020_05_staff id_fkey postgres
payment_p2020_06_customer_id_fkey postgres
payment_p2020_06_rental_id_fkey postgres
payment_p2020_06_staff_id_fkey postgres

rental rental_customer_id_fkey postgres
rental rental_inventory_id_fkey postgres
rental rental_staff_id_fkey postgres
staff staff_address_id_fkey postgres
staff staff_store_id_fkey postgres

store store_address_id_fkey postgres

4.8 pgcopydb list

pgcopydb list - List database objects from a Postgres instance

This command prefixes the following sub-commands:

pgcopydb list

extensions
tables
table-parts
sequences
indexes
depends
schema
progress

List
List
List
List
List
List
List
List

all the source
all the source
a source table
all the source
all
all
the

the progress

extensions to copy

tables to copy data from

copy partitions

sequences to copy data from

the indexes to create again after copying the data
the dependencies to filter-out
schema to migrate, formatted in JSON

4.8.1 pgcopydb list extensions

pgcopydb list extensions - List all the source extensions to copy

The command pgcopydb list extensions connects to the source database and executes a SQL query using the
Postgres catalogs to get a list of all the extensions to COPY to the target database.

pgcopydb list extensions: List all the source extensions to copy

usage: pgcopydb list extensions

--source

Postgres URI to the source database

--source ...

50

Chapter 4. Manual Pages

pgcopydb, Release 0.9

4.8.2 pgcopydb list tables

pgcopydb list tables - List all the source tables to copy data from

The command pgcopydb list tables connects to the source database and executes a SQL query using the Postgres
catalogs to get a list of all the tables to COPY the data from.

pgcopydb list tables: List all the source tables to copy data from
usage: pgcopydb list tables --source ...

--source Postgres URI to the source database

--filter <filename> Use the filters defined in <filename>
--list-skipped List only tables that are setup to be skipped
--without-pkey List only tables that have no primary key

4.8.3 pgcopydb list table-parts

pgcopydb list table-parts - List a source table copy partitions

The command pgcopydb list table-parts connects to the source database and executes a SQL query using the
Postgres catalogs to get detailed information about the given source table, and then another SQL query to compute how
to split this source table given the size threshold argument.

pgcopydb list table-parts: List a source table copy partitions

usage: pgcopydb list table-parts --source ...
--source Postgres URI to the source database
--schema-name Name of the schema where to find the table
--table-name Name of the target table

--split-tables-larger-than Size threshold to consider partitioning

4.8.4 pgcopydb list sequences

pgcopydb list sequences - List all the source sequences to copy data from

The command pgcopydb list sequences connects to the source database and executes a SQL query using the
Postgres catalogs to get a list of all the sequences to COPY the data from.

pgcopydb list sequences: List all the source sequences to copy data from
usage: pgcopydb list sequences --source ...

--source Postgres URI to the source database
--filter <filename> Use the filters defined in <filename>
--list-skipped List only tables that are setup to be skipped

4.8.5 pgcopydb list indexes

pgcopydb list indexes - List all the indexes to create again after copying the data

The command pgcopydb list indexes connects to the source database and executes a SQL query using the Postgres
catalogs to get a list of all the indexes to COPY the data from.

pgcopydb list indexes: List all the indexes to create again after copying the data

usage: pgcopydb list indexes --source ... [--schema-name [--table-name]]
--source Postgres URI to the source database
--schema-name Name of the schema where to find the table
--table-name Name of the target table
--filter <filename> Use the filters defined in <filename>
--list-skipped List only tables that are setup to be skipped

4.8. pgcopydb list 51

pgcopydb, Release 0.9

4.8.6 pgcopydb list depends

pgcopydb list depends - List all the dependencies to filter-out

The command pgcopydb list depends connects to the source database and executes a SQL query using the Postgres
catalogs to get a list of all the objects that depend on excluded objects from the filtering rules.

pgcopydb list depends: List all the dependencies to filter-out

usage: pgcopydb list depends --source ... [--schema-name [--table-name]]
--source Postgres URI to the source database
--schema-name Name of the schema where to find the table
--table-name Name of the target table
--filter <filename> Use the filters defined in <filename>
--list-skipped List only tables that are setup to be skipped

4.8.7 pgcopydb list schema

pgcopydb list schema - List the schema to migrate, formatted in JSON

The command pgcopydb list schema connects to the source database and executes a SQL queries using the Postgres
catalogs to get a list of the tables, indexes, and sequences to migrate. The command then outputs a JSON formatted
string that contains detailed information about all those objects.

pgcopydb list schema: List the schema to migrate, formatted in JSON
usage: pgcopydb list schema --source ...

--source Postgres URI to the source database
--filter <filename> Use the filters defined in <filename>

4.8.8 pgcopydb list progress

pgcopydb list progress - List the progress

The command pgcopydb list progress reads the schema. json file in the work directory, parses it, and then
computes how many tables and indexes are planned to be copied and created on the target database, how many have
been done already, and how many are in-progress.

When using the option --json the JSON formatted output also includes a list of all the tables and indexes that are
currently being processed.

pgcopydb list progress: List the progress
usage: pgcopydb list progress --source ...

--source Postgres URI to the source database
--json Format the output using JSON

4.8.9 Options

The following options are available to pgcopydb dump schema:

--source Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

--schema-name Filter indexes from a given schema only.

--table-name Filter indexes from a given table only (use --schema-name to fully qualify the
table).

52 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

pgcopydb, Release 0.9

--without-pkey

--filter <filename>

--list-skipped

--json

--verbose

--debug

--trace

--quiet

4.8.10 Environment

PGCOPYDB_SOURCE_PGURI

List only tables from the source database when they have no primary key attached
to their schema.

This option allows to skip objects in the list operations. See Filtering for details
about the expected file format and the filtering options available.

Instead of listing objects that are selected for copy by the filters installed with the
--filter option, list the objects that are going to be skipped when using the

filters.

The output of the command is formatted in JSON, when supported. Ignored oth-
erwise.

Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

Set current verbosity to DEBUG level.

Set current verbosity to TRACE level.

Set current verbosity to ERROR level.

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

4.8.11 Examples

Listing the tables:

$ pgcopydb list tables

14:35:18
14:35:19
0ID

13827 INFO Listing ordinary tables in "port=54311 host=localhost dbname=pgloader"

13827 INFO Fetched information for 56 tables

——— e 4

Schema Name

csv
expected
expected
public
expected
public
csv
expected
csv

err
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
expected
nsitra

Table Name

track
track_full
track_full
districts
districts
blocks
blocks
partial
errors
allcols
csv
csv_escape_mode
errors
group

json
matching
nullif
nulls
partial
reg2013
serial
sexp

testl

udc

XZero
testl

(=== — = = = = R = = = - -]

|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

On-disk size

(continues on next page)

4.8. pgcopydb list

53

pgcopydb, Release 0.9

(continued from previous page)

16388 | public | allcols
17256 | public | csv |
17047 | public | csv_escape_mode
17107 | public | group |
17125 | public | json |
17065 | public | matching
17192 | public | nullif
17219 | public | nulls
17307 | public | reg2013
17428 | public | serial
17238 | public | sexp |
17446 | public | udc |
17463 | public | XZero
17303 | expected | copyhex |
17033 | expected | dateformat
17366 | expected | fixed
17041 | expected | jordane
17173 | expected | missingcol
17396 | expected | overflow |
17186 | expected | tab_csv |
17213 | expected | temp |
17299 | public | copyhex |
17029 | public | dateformat
17362 | public | fixed |
17037 | public | jordane
17164 | public | missingcol
17387 | public | overflow |
17182 | public | tab_csv |
17210 | public | temp |

(== = = = = = = R I — I — I — = R — I I R = R = = = = =)

8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes
8192 bytes

Listing a table list of COPY partitions:

$ pgcopydb list table-parts --table-name rental --split-at 300kB

16:43:26 73794 INFO Running pgcopydb version 0.8.8.90838291.dirty from "/Users/dim/dev/PostgreSQL/pgcopydb/src/bin/pgcopydb/

—pgcopydb"
16:43:26 73794 INFO Listing COPY partitions for table "public

Part | Min | Max | Count
——————————— B et B e e
1/5 | 1] 3211 | 3211

2/5 | 3212 | 6422 | 3211

3/5 | 6423 | 9633 | 3211

4/5 | 9634 | 12844 | 3211

5/5 | 12845 | 16049 | 3205

rental” in "postgres://@:/pagila?”
16:43:26 73794 INFO Table "public"."rental" COPY will be split 5-ways

Listing the indexes:

$ pgcopydb list indexes

14:35:07 13668 INFO Listing indexes in "port=54311 host=localhost dbname=pgloader"

14:35:07 13668 INFO Fetching all indexes in source database
14:35:07 13668 INFO Fetched information for 12 indexes

CREATE INDEX blocks_ip4r_idx ON.,

CREATE INDEX partial_b_idx ON csv.
CREATE UNIQUE INDEX partial_a_key..
CREATE UNIQUE INDEX track_pkey ON..

CREATE UNIQUE INDEX errors_pkey.,

0ID | Schema | Index Name | conname | Constraint

————————— et i ettt e

17002 | csv | blocks_ip4r_idx |
—scsv.blocks USING gist (iprange)

17415 | csv | partial_b_idx |
—spartial USING btree (b)

17414 | csv | partial_a_key | partial_a_key | UNIQUE (a) |
<+ON csv.partial USING btree (a)

17092 | csv | track_pkey | track_pkey | PRIMARY KEY (trackid) |
<scsv.track USING btree (trackid)

17329 | err | errors_pkey | errors_pkey | PRIMARY KEY (a) |
—ON err.errors USING btree (a)

16394 | public | allcols_pkey | allcols_pkey | PRIMARY KEY (a) |

<>ON public.allcols USING btree (a)
17054 | public | csv_escape_mode_pkey
—escape_mode_pkey ON public.csv_escape_mode USING btree (id)

| csv_escape_mode_pkey |

PRIMARY KEY (id)

CREATE UNIQUE INDEX allcols_pkey.,

| CREATE UNIQUE INDEX csv_

17199 | public | nullif_pkey | nullif_pkey | PRIMARY KEY (id) | CREATE UNIQUE INDEX nullif pkey,.
—ON public."nullif" USING btree (id)

17435 | public | serial_pkey | serial_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX serial_pkey,.
<+0N public.serial USING btree (a)

17288 | public | track_full_pkey | track_full_pkey | PRIMARY KEY (trackid) | CREATE UNIQUE INDEX track_full_
—spkey ON public.track_full USING btree (trackid)

17452 | public | udc_pkey | udc_pkey | PRIMARY KEY (b) | CREATE UNIQUE INDEX udc_pkey ON..
—spublic.udc USING btree (b)

17469 | public | xzero_pkey | xzero_pkey | PRIMARY KEY (a) | CREATE UNIQUE INDEX xzero_pkey ON,.

(continues on next page)

54 Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

‘ —public.xzero USING btree (a)

|

Listing the schema in JSON:

‘$ pgcopydb list schema --split-at 200kB

This gives the following JSON output:

{
"setup": {

"snapshot": "00000003-00051AAE-1",
"source_pguri": "postgres:\/\/@:\/pagila?",
"target_pguri": "postgres:\/\/@:\/plop?",
"table-jobs": 4,
"index-jobs": 4,
"split-tables-larger-than": 204800

3,
"tables": [
{
"oid": 317934,
"schema": "public"
"name": "rental",

"reltuples": 16044,

"bytes": 1253376,

"bytes-pretty": "1224 kB",

"exclude-data": false,

"restore-list-name": "public rental postgres”,
"part-key": "rental_id",

"parts": [

{
"number": 1,
"total": 7,
"min": 1,
"max": 2294,
"count": 2294

3,

{
"number": 2,
"total": 7,
"min": 2295,
"max": 4588,
"count": 2294

1,

{
"number": 3,
"total": 7,
"min": 4589,
"max": 6882,
"count": 2294

1,

{
"number": 4,
"total": 7,
"min": 6883,
"max": 9176,
"count": 2294

1,

{
"number": 5,
"total": 7,
"min": 9177,
"max": 11470,
"count": 2294

1,

{
"number": 6,
"total": 7,
"min": 11471,
"max": 13764,
"count": 2294

1,

{
"number": 7,
"total": 7,
"min": 13765,
"max": 16049,

(continues on next page)

4.8. pgcopydb list

55

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

pgcopydb, Release 0.9

(continued from previous page)

"count": 2285

"oid": 317818,

"schema": "public"

"name": "film",

"reltuples": 1000,

"bytes": 483328,

"bytes-pretty": "472 kB",

"exclude-data": false,

"restore-list-name": "public film postgres",
"part-key": "film_id",

"parts": [

"number": 1,
"total": 3,

"count": 334

"number": 2,
"total": 3,
"min": 335,
"max": 668,
"count": 334

"number": 3,
"total": 3,
"min": 669,
"max": 1000,
"count": 332

"oid": 317920,

"schema": "public"

"name": "payment_p2020_04",

"reltuples": 6754,

"bytes": 434176,

"bytes-pretty": "424 kB",

"exclude-data": false,

"restore-list-name": "public payment_p2020_04 postgres",
"part-key": ""

"oid": 317916,

"schema": "public"

"name": "payment_p2020_03",

"reltuples": 5644,

"bytes": 368640,

"bytes-pretty": "360 kB",

"exclude-data": false,

"restore-list-name": "public payment_p2020_03 postgres",
"part-key": ""

"oid": 317830,

"schema": "public"

"name": "film_actor",

"reltuples": 5462,

"bytes": 270336,

"bytes-pretty": "264 kB",

"exclude-data": false,

"restore-list-name": "public film actor postgres",
"part-key": ""

"oid": 317885,

"schema": "public"
"name": "inventory",
"reltuples": 4581,
"bytes": 270336,
"bytes-pretty": "264 kB",

(continues on next page)

56

Chapter 4. Manual Pages

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

pgcopydb, Release 0.9

(continued from previous page)

"exclude-data": false,
"restore-list-name": "public inventory postgres",
"part-key": "inventory_id",
"parts": [
{
"number": 1,
"total": 2,
"min": 1,
"max": 2291,
"count": 2291

"number": 2,
"total": 2,
"min": 2292,
"max": 4581,
"count": 2290

"oid": 317912,

"schema": "public"

"name": "payment_p2020_02",

"reltuples": 2312,

"bytes": 163840,

"bytes-pretty": "160 kB",

"exclude-data": false,

"restore-list-name": "public payment_p2020_02 postgres",
"part-key": ""

"oid": 317784,

"schema": "public"

"name": "customer",

"reltuples": 599,

"bytes": 106496,

"bytes-pretty": "104 kB",

"exclude-data": false,

"restore-list-name": "public customer postgres",
"part-key": "customer_id"

"oid": 317845,

"schema": "public"

"name": "address",

"reltuples": 603,

"bytes": 98304,

"bytes-pretty": "96 kB",

"exclude-data": false,

"restore-list-name": "public address postgres",
"part-key": "address_id"

"oid": 317908,

"schema": "public"

"name": "payment_p2020_01",

"reltuples": 1157,

"bytes": 98304,

"bytes-pretty": "96 kB",

"exclude-data": false,

"restore-list-name": "public payment_p2020_01 postgres",
"part-key": ""

"oid": 317855,

"schema": "public"

"name": "city",

"reltuples": 600,

"bytes": 73728,

"bytes-pretty": "72 kB",

"exclude-data": false,

"restore-list-name": "public city postgres",
"part-key": "city_id"

"oid": 317834,
"schema": "public"

(continues on next page)

4.8. pgcopydb list

57

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

pgcopydb, Release 0.9

(continued from previous page)

"name": "film_category",
"reltuples": 1000,
"bytes": 73728,
"bytes-pretty": "72 kB",
"exclude-data": false,

"restore-list-name": "public film_category postgres",

"part-key":

"oid": 317798,

"schema": "public"
"name": "actor",
"reltuples": 200,
"bytes": 49152,
"bytes-pretty": "48 kB",
"exclude-data": false,

"restore-list-name": "public actor postgres",

"part-key": "actor_id"

"oid": 317924,

"schema": "public"

"name": "payment_p2020_05",
"reltuples": 182,

"bytes": 40960,
"bytes-pretty": "40 kB",
"exclude-data": false,

"restore-list-name": "public payment_p2020_05

"part-key":

"oid": 317808,

"schema": "public"
"name": "category",
"reltuples": 0,

"bytes": 16384,
"bytes-pretty": "16 kB",
"exclude-data": false,

postgres",

"restore-list-name": "public category postgres",

"part-key": "category_id"

"oid": 317865,

"schema": "public"
"name": "country",
"reltuples": 109,
"bytes": 16384,
"bytes-pretty": "16 kB",
"exclude-data": false,

"restore-list-name": "public country postgres",

"part-key": "country_id"

"oid": 317946,

"schema": "public"
"name": "staff"
"reltuples": 0,

"bytes": 16384,
"bytes-pretty": "16 kB",
"exclude-data": false,

"restore-list-name": "public staff postgres",

"part-key": "staff_id"

"oid": 378280,

"schema": "pgcopydb",

"name": "sentinel",

"reltuples": 1,

"bytes": 8192,

"bytes-pretty": "8192 bytes",
"exclude-data": false,
"restore-list-name": "pgcopydb sentinel
"part-key": ""

"oid": 317892,
"schema": "public"
"name": "language"

dim",

(continues on next page)

58

Chapter 4. Manual Pages

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

pgcopydb, Release 0.9

(continued from previous page)

1,

}

"reltuples": 0,

"bytes": 8192,

"bytes-pretty": "8192 bytes",

"exclude-data": false,

"restore-list-name": "public language postgres",
"part-key": "language_id"

"oid": 317928,

"schema": "public"

"name": "payment_p2020_06",

"reltuples": 0,

"bytes": 8192,

"bytes-pretty": "8192 bytes",

"exclude-data": false,

"restore-list-name": "public payment_p2020_06 postgres",
"part-key": ""

"oid": 317957,

"schema": "public"

"name": "store",

"reltuples": 0,

"bytes": 8192,

"bytes-pretty": "8192 bytes",

"exclude-data": false,

"restore-list-name": "public store postgres",
"part-key": "store_id"

"indexes": [

{

"oid": 378283,
"schema": "pgcopydb",
"name": "sentinel_expr_idx",

"isPrimary": false,
"isUnique": true,
"columns": ""

"sql": "CREATE UNIQUE INDEX sentinel_expr_idx ON pgcopydb.sentinel USING btree ((1))",

"restore-list-name": "pgcopydb sentinel_expr_idx dim",
"table":

378280,
"schema": "pgcopydb",
"name": "sentinel"

"oid": 318001,
"schema": "public"
"name": "idx_actor_last_name",
"isPrimary": false,
: false,
columns": "last_name",
"sql": "CREATE INDEX idx_actor_last_name ON public.actor USING btree (last_name)",
"restore-list-name": "public idx_actor_last_name postgres",
"table": {
"oid": 317798,
"schema": "public"
"name": "actor"

"oid": 317972,

"schema": "public"

"name": "actor_pkey",

"isPrimary": true,

"isUnique": true,

"columns": "actor_id",

"sql": "CREATE UNIQUE INDEX actor_pkey ON public.actor USING btree (actor_id)",
"restore-list-name": ""

"table": {
"oid": 317798,
"schema": "public"
"name": "actor"

1,

"constraint": {
"oid": 317973,

name": "actor_pkey",

(continues on next page)

4.8. pgcopydb list

59

381
382
383
384
385
386
387
388
389
390
391

392
393
304
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

pgcopydb, Release 0.9

(continued from previous page)

"sql": "PRIMARY KEY (actor_id)"

"oid": 317974,
"schema": "public"
"name": "address_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "address_id",
"sql": "CREATE UNIQUE INDEX address_pkey ON public.address USING btree (address_id)",
"restore-list-name": ""
"table": {
"oid": 317845,
"schema": "public"
"name": "address"
}
"constraint": {
"oid": 317975,
"name": "address_pkey",
"sql": "PRIMARY KEY (address_id)"

"oid": 318003,
"schema": "public"
"name": "idx_fk_city_id",
"isPrimary": false,
"isUnique": false,
"columns": "city_id",
"sql": "CREATE INDEX idx_fk_city_id ON public.address USING btree (city_id)",
"restore-list-name": "public idx_fk_city_id postgres",
"table": {
"oid": 317845,
"schema": "public"
"name": "address"

"oid": 317976,
"schema": "public"
"name": "category_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "category_id",
"sql": "CREATE UNIQUE INDEX category_pkey ON public.category USING btree (category_id)",
"restore-list-name": ""
"table": {
"oid": 317808,
"schema": "public"
"name": "category"
1,
"constraint": {
"oid": 317977,
"name": "category_pkey",
"sql": "PRIMARY KEY (category_id)"

"oid": 317978,

"schema": "public"

"name": "city_pkey",

"isPrimary": true,

"isUnique": true,

"columns": "city_id",

"sql": "CREATE UNIQUE INDEX city_pkey ON public.city USING btree (city_id)",

"restore-list-name": ""

"table": {
"oid": 317855,
"schema": "public"
"name": "city"

}
"constraint": {
"oid": 317979,
"name": "city_pkey",
"sql": "PRIMARY KEY (city_id)"

(continues on next page)

60 Chapter 4. Manual Pages

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

pgcopydb, Release 0.9

(continued from previous page)

"oid": 318004,
"schema": "public"
"name": "idx_fk_country_id",

"isPrimary": false,
"isUnique": false,
"columns": "country_id",
"sql": "CREATE INDEX idx_fk_country_id ON public.city USING btree (country_id)",
"restore-list-name": "public idx_fk_country_id postgres",
"table": {
"oid": 317855,
"schema": "public"
"name": "city"

"oid": 317980,
"schema": "public"
"name": "country_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "country_id",
"sql": "CREATE UNIQUE INDEX country_pkey ON public.country USING btree (country_id)",
"restore-list-name": ""
"table": {
"oid": 317865,
"schema": "public"
"name": "country"
1,
"constraint": {
"oid": 317981,
"name": "country_pkey",
"sql": "PRIMARY KEY (country_id)"

"oid": 318024,
"schema": "public"
"name": "idx_last_name",
"isPrimary": false,
"isUnique": false,
"columns": "last_name",
"sql": "CREATE INDEX idx_last_name ON public.customer USING btree (last_name)",
"restore-list-name": "public idx_last_name postgres",
"table": {
"oid": 317784,
"schema": "public"
"name": "customer"

"oid": 318002,
"schema": "public"
"name": "idx_fk_address_id",
"isPrimary": false,
"isUnique": false,
"columns": "address_id",
"sql": "CREATE INDEX idx_fk_address_id ON public.customer USING btree (address_id)",
"restore-list-name": "public idx_fk_address_id postgres",
"table": {
"oid": 317784,
"schema": "public"
"name": "customer"

"oid": 317982,
"schema": "public"
"name": "customer_pkey",

"isPrimary": true,

"isUnique": true,

"columns": "customer_id",

"sql": "CREATE UNIQUE INDEX customer_pkey ON public.customer USING btree (customer_id)",
"restore-list-name": ""

"table": {
"oid": 317784,
"schema": "public"
"name": "customer"

(continues on next page)

4.8. pgcopydb list 61

pgcopydb, Release 0.9

(continued from previous page)

537 3,

538 "constraint": {

539 "oid": 317983,

540 "name": "customer_pkey",

541 "sql": "PRIMARY KEY (customer_id)"

542 }

543 },

544 {

545 "oid": 318023,

546 "schema": "public",

547 "name": "idx_fk_store_id",

548 "isPrimary": false,

549 "isUnique": false,

550 "columns": "store_id",

551 "sql": "CREATE INDEX idx_fk_store_id ON public.customer USING btree (store_id)",
552 "restore-list-name": "public idx_fk_store_id postgres",
553 "table": {

554 "oid": 317784,

555 "schema": "public",

556 "name": "customer"

557 }

558 1,

559 {

560 "oid": 318009,

561 "schema": "public",

562 "name": "idx_fk_original_language_id",

563 "isPrimary": false,

564 "isUnique": false,

565 "columns": "original_language_id",

566 "sql": "CREATE INDEX idx_fk_original_language_id ON public.film USING btree (original_language_id)",
567 "restore-list-name": "public idx_fk_original_language_id postgres",
568 "table": {

569 "oid": 317818,

570 "schema": "public",

571 "name": "film"

572 ¥

573 1,

574 {

575 "oid": 318026,

576 "schema": "public",

577 "name": "idx_title",

578 "isPrimary": false,

579 "isUnique": false,

580 "columns": "title",

581 "sql": "CREATE INDEX idx_title ON public.film USING btree (title)",
582 "restore-list-name": "public idx_title postgres",

583 "table": {

584 "oid": 317818,

585 "schema": "public",

586 "name": "film"

587 }

588 1,

589 {

590 "oid": 318000,

591 "schema": "public",

592 "name": "film_fulltext_idx",

593 "isPrimary": false,

594 "isUnique": false,

595 "columns": "fulltext",

596 "sql": "CREATE INDEX film_fulltext_idx ON public.film USING gist (fulltext)",
597 "restore-list-name": "public film_fulltext_idx postgres",
598 "table": {

599 "oid": 317818,

600 "schema": "public",

601 "name": "film"

602 }

603 1,

604 {

605 "oid": 317988,

606 "schema": "public",

607 "name": "film_pkey",

608 "isPrimary": true,

609 "isUnique": true,

610 "columns": "film_id",

611 "sql": "CREATE UNIQUE INDEX film_pkey ON public.film USING btree (film_id)",
612 "restore-list-name": ""

613 "table": {

614 "oid": 317818,

(continues on next page)

62 Chapter 4. Manual Pages

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

pgcopydb, Release 0.9

(continued from previous page)

"schema": "public",
"name": "film"
1,
"constraint": {
"oid": 317989,
"name": "film_pkey",
"sql": "PRIMARY KEY (film_id)"

"oid": 318008,
"schema": "public",
"name": "idx_fk_language_id",
"isPrimary": false,
"isUnique": false,
"columns": "language_id",
"sql": "CREATE INDEX idx_fk_language_id ON public.film USING btree
"restore-list-name": "public idx_fk_language_id postgres",
"table": {
"oid": 317818,
"schema": "public",

"name": "film"

"oid": 317984,
"schema": "public"
"name": "film_actor_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "actor_id,film_id",
"sql": "CREATE UNIQUE INDEX film_actor_pkey
"restore-list-name": ""
"table": {
"oid": 317830,
"schema": "public",
"name": "film_actor”
1,
"constraint": {
"oid": 317985,
"name": "film_actor_pkey",
"sql": "PRIMARY KEY (actor_id, film_id)"

"oid": 318006,

"schema": "public",
"name": "idx_fk_film_id",
"isPrimary": false,
"isUnique": false,
"columns": "film_id",

(language_id)",

"sql": "CREATE INDEX idx_fk_film_id ON public.film_actor USING btree (film_id)",

"restore-list-name": "public idx_fk_film_id postgres",
"table": {

"oid": 317830,

"schema": "public"

"name": "film_actor"

"oid": 317986,

"schema": "public",

"name": "film_category_pkey",
"isPrimary": true,

"isUnique": true,

"columns": "film_id,category_id",

ON public.film_actor USING btree (actor_id, film_id)",

"sql": "CREATE UNIQUE INDEX film_category_pkey ON public.film_category USING btree (film_id, category_id)",

"restore-list-name":
"table": {
"oid": 317834,
"schema": "public",

name": "film_category"
},
"constraint": {

"oid": 317987,

"name": "film_category_pkey",

"sql": "PRIMARY KEY (film_id, category_id)"
}

(continues on next page)

4.8. pgcopydb list

63

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

pgcopydb, Release 0.9

(continued from previous page)

"oid": 318025,
"schema": "public"
"name": "idx_store_id_film_id",
"isPrimary": false,
: false,
"columns": "film_id,store_id",
"sql": "CREATE INDEX idx_store_id_film_id ON public.inventory USING btree (store_id, film_id)",
"restore-list-name": "public idx_store_id_film_id postgres",
"table": {
"oid": 317885,
"schema": "public"
"name": "inventory"

"oid": 317990,

"schema": "public"

"name": "inventory_pkey",

"isPrimary": true,

"isUnique": true,

"columns": "inventory_id",

"sql": "CREATE UNIQUE INDEX inventory_pkey ON public.inventory USING btree (inventory_id)",
"restore-list-name": ""

"table": {
"oid": 317885,
"schema": "public"
"name": "inventory"
}
"constraint": {
"oid": 317991,
"name": "inventory_pkey",
"sql": "PRIMARY KEY (inventory_id)"
}
"oid": 317992,

"schema": "public"
"name": "language_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "language_id",
"sql": "CREATE UNIQUE INDEX language_pkey ON public.language USING btree (language_id)",
"restore-list-name": ""
"table": {
"oid": 317892,
"schema": "public"
"name": "language"
}
"constraint": {
"oid": 317993,
"name": "language_pkey",
"sql": "PRIMARY KEY (language_id)"

"oid": 318010,
"schema": "public"
"name": "idx_fk_payment_p2020_01_customer_id",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_01_customer_id ON public.payment_p2020_01 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_01_customer_id postgres",
"table": {

"oid": 317908,

"schema": "public"

"name": "payment_p2020_01"

"oid": 318029,

"schema": "public"

"name": "payment_p2020_01_customer_id_idx",
"isPrimary": false,

false,

"customer_id",

(continues on next page)

64

Chapter 4. Manual Pages

771
77
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

pgcopydb, Release 0.9

(continued from previous page)

"sql": "CREATE INDEX payment_p2020_01_customer_id_idx ON public.payment_p2020_01 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_01_customer_id_idx postgres",
"table": {

"oid": 317908,

"schema": "public"

"name": "payment_p2020_01"

"oid": 318012,
"schema": "public"
"name": "idx_fk_payment_p2020_01_staff id"
"isPrimary": false,
"isUnique": false,
"columns": "staff_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_01_staff_id ON public.payment_p2020_01 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_01_staff id postgres",
"table": {
"oid": 317908,
"schema": "public"

"name": "payment_p2020_01"

"oid": 318013,
"schema": "public"
"name": "idx_fk_payment_p2020_02_customer_id",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_02_customer_id ON public.payment_p2020_02 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_02_customer_id postgres",
"table": {
"oid": 317912,
"schema": "public"
"name": "payment_p2020_02"

"oid": 318014,
"schema": "public"
"name": "idx_fk_payment_p2020_02_staff id",
"isPrimary": false,
"isUnique": false,
"columns": "staff_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_02_staff_id ON public.payment_p2020_02 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_02_staff_ id postgres",
"table": {
"oid": 317912,
"schema": "public"
"name": "payment_p2020_02"

"oid": 318030,
"schema": "public"
"name": "payment_p2020_02_customer_id_idx",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX payment_p2020_02_customer_id_idx ON public.payment_p2020_02 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_02_customer_id_idx postgres",
"table": {
"oid": 317912,
"schema": "public"
"name": "payment_p2020_02"

"oid": 318016,

"schema": "public"

"name": "idx_fk_payment_p2020_03_staff_id",

"isPrimary": false,

"isUnique": false,

"columns": "staff_id",

"sql": "CREATE INDEX idx_fk_payment_p2020_03_staff_id ON public.payment_p2020_03 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_03_staff_id postgres",

"table": {

(continues on next page)

4.8. pgcopydb list 65

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

pgcopydb, Release 0.9

(continued from previous page)

"oid": 317916,
"schema": "public"

name": "payment_p2020_03"

"oid": 318031,
"schema": "public"
"name": "payment_p2020_03_customer_id_idx",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX payment_p2020_03_customer_id_idx ON public.payment_p2020_03 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_03_customer_id_idx postgres",
"table": {

"oid": 317916,

"schema": "public"

"name": "payment_p2020_03"

}

"oid": 318015,

"schema": "public"

"name": "idx_fk_payment_p2020_03_customer_id",

"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_03_customer_id ON public.payment_p2020_03 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_03_customer_id postgres",
"table": {
"oid": 317916,
"schema": "public"
"name": "payment_p2020_03"

"oid": 318032,
"schema": "public"
"name": "payment_p2020_04_customer_id_idx",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX payment_p2020_04_customer_id_idx ON public.payment_p2020_04 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_04_customer_id_idx postgres",
"table": {
"oid": 317920,
"schema": "public"
"name": "payment_p2020_04"

"oid": 318018,
"schema": "public"
"name": "idx_fk_payment_p2020_04_staff id",
"isPrimary": false,
"isUnique": false,
"columns": "staff_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_04_staff id ON public.payment_p2020_04 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_04_staff_id postgres",
"table": {
"oid": 317920,
"schema": "public"
"name": "payment_p2020_04"

"oid": 318017,
"schema": "public"
"name": "idx_fk_payment_p2020_04_customer_id",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_04_customer_id ON public.payment_p2020_04 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_04_customer_id postgres",
"table": {
"oid": 317920,
"schema": "public"
"name": "payment_p2020_04"

(continues on next page)

66

Chapter 4. Manual Pages

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

pgcopydb, Release 0.9

(continued from previous page)

"oid": 318019,
"schema": "public"
"name": "idx_fk_payment_p2020_05_customer_id",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_05_customer_id ON public.payment_p2020_05 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_05_customer_id postgres",
"table": {
"oid": 317924,
"schema": "public"
"name": "payment_p2020_05"

"oid": 318020,
"schema": "public"
"name": "idx_fk_payment_p2020_05_staff id",
"isPrimary": false,
"isUnique": false,
"columns": "staff_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_05_staff id ON public.payment_p2020_05 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_05_staff id postgres",
"table": {
"oid": 317924,
"schema": "public"
"name": "payment_p2020_05"

"oid": 318033,
"schema": "public"
"name": "payment_p2020_05_customer_id_idx",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX payment_p2020_05_customer_id_idx ON public.payment_p2020_05 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_05_customer_id_idx postgres",
"table": {
"oid": 317924,
"schema": "public"

"name": "payment_p2020_05"

"oid": 318022,
"schema": "public"
"name": "idx_fk_payment_p2020_06_staff_id"
"isPrimary": false,
"isUnique": false,
"columns": "staff_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_06_staff_id ON public.payment_p2020_06 USING btree (staff_id)",
"restore-list-name": "public idx_fk_payment_p2020_06_staff_id postgres",
"table": {
"oid": 317928,
"schema": "public"

"name": "payment_p2020_06"

"oid": 318034,
"schema": "public"
"name": "payment_p2020_06_customer_id_idx",
"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX payment_p2020_06_customer_id_idx ON public.payment_p2020_06 USING btree (customer_id)",
"restore-list-name": "public payment_p2020_06_customer_id_idx postgres",
"table": {
"oid": 317928,
"schema": "public"
"name": "payment_p2020_06"

(continues on next page)

4.8. pgcopydb list 67

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

pgcopydb, Release 0.9

(continued from previous page)

"oid": 318021,
"schema": "public"
"name": "idx_fk_payment_p2020_06_customer_id",

"isPrimary": false,
"isUnique": false,
"columns": "customer_id",
"sql": "CREATE INDEX idx_fk_payment_p2020_06_customer_id ON public.payment_p2020_06 USING btree (customer_id)",
"restore-list-name": "public idx_fk_payment_p2020_06_customer_id postgres",
"table": {
"oid": 317928,
"schema": "public",

name": "payment_p2020_06"
}
1,
{
"oid": 318028,
"schema": "public"
"name": "idx_ung_rental_rental_date_inventory_id_customer_id",

"isPrimary": false,
"isUnique": true,
"columns": "rental_date,inventory_id,customer_id",
"sql": "CREATE UNIQUE INDEX idx_ung_rental_rental_date_inventory_id_customer_id ON public.rental USING btree,,
< (rental_date, inventory_id, customer_id)",
"restore-list-name": "public idx_ung_rental_rental_date_inventory_id_customer_id postgres",
"table": {
"oid": 317934,
"schema": "public"
"name": "rental"

"oid": 317994,
"schema": "public"
"name": "rental_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "rental_id",
"sql": "CREATE UNIQUE INDEX rental_pkey ON public.rental USING btree (rental_id)",
"restore-list-name": "",
"table": {
"oid": 317934,
"schema": "public"
"name": "rental"
1,
"constraint": {
"oid": 317995,
"name": "rental_pkey",
"sql": "PRIMARY KEY (rental_id)"

"oid": 318007,
"schema": "public"
"name": "idx_fk_inventory_id",
"isPrimary": false,
"isUnique": false,
"columns": "inventory_id",
"sql": "CREATE INDEX idx_fk_inventory_id ON public.rental USING btree (inventory_id)",
"restore-list-name": "public idx_fk_inventory_id postgres",
"table": {
"oid": 317934,
"schema": "public"
"name": "rental"

"oid": 317996,
"schema": "public"
"name": "staff pkey",

"isPrimary": true,

"isUnique": true,

"columns": "staff_id",

"sql": "CREATE UNIQUE INDEX staff_pkey ON public.staff USING btree (staff_id)",
"restore-list-name": "",

"table": {
"oid": 317946,
"schema": "public"
"name": "staff"

(continues on next page)

68 Chapter 4. Manual Pages

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

pgcopydb, Release 0.9

(continued from previous page)

3
1,

1,
"constraint": {
"oid": 317997,
"name": "staff_pkey",
"sql": "PRIMARY KEY (staff_id)"

"oid": 318027,
"schema": "public"
"name": "idx_ung_manager_staff_id"
"isPrimary": false,
"isUnique": true,
"columns": "manager_staff_id",
"sql": "CREATE UNIQUE INDEX idx_ung_manager_staff_id ON public.store USING btree
"restore-list-name": "public idx_ung manager_staff_id postgres",
"table": {
"oid": 317957,
"schema": "public"
"name": "store"

"oid": 317998,

"schema": "public"

"name": "store_pkey",

"isPrimary": true,

"isUnique": true,

"columns": "store_id",

"sql": "CREATE UNIQUE INDEX store_pkey ON public.store USING btree
"restore-list-name": ""

(store_id)",

317957,

"schema": "public"

"name": "store"
3,
"constraint": {

"oid": 317999,

"name": "store_pkey",

"sql": "PRIMARY KEY (store_id)"
}

"sequences": [

{

"oid": 317796,

"schema": "public"

"name": "actor_actor_id_seq",

"last-value": 200,

"is-called": true,

"restore-list-name": "public actor_actor_id_seq postgres"

"oid": 317843,
"schema": "public"

"name": "address_address_id_seq",
"last-value": 605,
"is-called": true,

"restore-list-name": "public address_address_id_seq postgres"

"oid": 317806,
"schema": "public"

name": "category_category_id_seq"
"last-value": 16,
"is-called": true,

"restore-list-name": "public category_category_id_seq postgres"

"oid": 317853,

"schema": "public"

"name": "city_city_id_seq"

"last-value": 600,

"is-called": true,

"restore-list-name": "public city_city_id_seq postgres"

"oid": 317863,

(manager_staff_id)",

(continues on next page)

4.8. pgcopydb list

69

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

pgcopydb, Release 0.9

(continued from previous page)

"schema": "public"
"name": "country_country_id_seq",
"last-value": 109,

"is-called": true,

"restore-list-name": "public country_country_id_seq postgres"
"oid": 317782,

"schema": "public"

"name": "customer_customer_id_seq"

"last-value": 599,
"is-called": true,

"restore-list-name": "public customer_customer_id_seq postgres"
"oid": 317816,

"schema": "public"

"name": "film_film_id_seq"

"last-value": 1000,
"is-called": true,
"restore-list-name": "public film_film_id_seq postgres"

"oid": 317883,
"schema": "public"
"name": "inventory_inventory_id_seq",
"last-value": 4581,

"is-called": true,

"restore-list-name": "public inventory_inventory_id_seq postgres"
"oid": 317890,

"schema": "public"

"name": "language_language_id_seq"

"last-value": 6,
"is-called": true,

"restore-list-name": "public language_language_id_seq postgres"
"oid": 317902,

"schema": "public"

"name": "payment_payment_id_seq",

"last-value": 32099,
"is-called": true,
"restore-list-name": "public payment_payment_id_seq postgres"

"oid": 317932,
"schema": "public"
"name": "rental_rental_id_seq",
"last-value": 16050,
"is-called": true,

"restore-list-name": "public rental_rental_id_seq postgres"

"oid": 317944,
"schema": "public"
"name": "staff_staff_id_seq",

"last-value": 2,
"is-called": true,
"restore-list-name": "public staff_staff id_seq postgres"

"oid": 317955,
"schema": "public"
"name": "store_store_id_seq",

"last-value": 2,
"is-called": true,
"restore-list-name": "public store_store_id_seq postgres"

Listing current progress (log lines removed):

$ pgcopydb list progress 2>/dev/null

| Total Count | In Progress | Done

(continues on next page)

70

Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

Tables | 21 | 4
Indexes | 48 | 14

Listing current progress, in JSON:

$ pgcopydb list progress --json 2>/dev/null

"table-jobs": 4,
"index-jobs": 4,

"tables": {
"total": 21,
"done": 9,
"in-progress": [
{
"oid": 317908,
"schema": "public",

"name": "payment_p2020_01",

"reltuples": 1157,

"bytes": 98304,

"bytes-pretty": "96 kB",

"exclude-data": false,

"restore-list-name": "public payment_p2020_01 postgres",

"part-key": ""
"process": {
"pid": 75159,

"start-time-epoch": 1662476249,
"start-time-string": "2022-09-06 16:57:29 CEST",
"command": "COPY \"public\".\"payment_p2020_01\""

}
1,
{
"oid": 317855,
"schema": "public",
"name": "city",
"reltuples": 600,
"bytes": 73728,
"bytes-pretty": "72 kB",
"exclude-data": false,
"restore-list-name": "public city postgres",
"part-key": "city_id",
"process": {
"pid": 75157,
"start-time-epoch": 1662476249,
"start-time-string": "2022-09-06 16:57:29 CEST",
"command": "COPY \"public\".\"city\""
}
}
]
1,
"indexes": {
"total": 48,
"done": 39,
"in-progress": [
{
"oid": 378283,
"schema": "pgcopydb",
"name": "sentinel_expr_idx",

"isPrimary": false,
"isUnique": true,
"columns": ""
"sql": "CREATE UNIQUE INDEX sentinel_expr_idx ON pgcopydb.sentinel USING btree ((1))",
"restore-list-name": "pgcopydb sentinel_expr_idx dim",
"table": {
"oid": 378280,
"schema": "pgcopydb",
"name": "sentinel"
+,
"process": {
"pid": 74372,
"start-time-epoch": 1662476080,
"start-time-string": "2022-09-06 16:54:40 CEST"

"oid": 317980,
"schema": "public",

(continues on next page)

4.8. pgcopydb list 71

pgcopydb, Release 0.9

(continued from previous page)

"name": "country_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "country_id",
"sql": "CREATE UNIQUE INDEX country_pkey ON public.country USING btree (country_id)",
"restore-list-name": "public country_pkey postgres",
"table": {
"oid": 317865,
"schema": "public",
"name": "country"
3,
"constraint": {
"oid": 317981,
"name": "country_pkey",
"sql": "PRIMARY KEY (country_id)",
"restore-list-name": ""
1,
"process": {
"pid": 74358,
"start-time-epoch": 1662476080,
"start-time-string": "2022-09-06 16:54:40 CEST"

"oid": 317996,
"schema": "public",
"name": "staff_pkey",
"isPrimary": true,
"isUnique": true,
"columns": "staff_id",
"sql": "CREATE UNIQUE INDEX staff pkey ON public.staff USING btree (staff_id)",
"restore-list-name": "public staff_pkey postgres",
"table": {
"oid": 317946,
"schema": "public",
"name": "staff"
1,
"constraint": {
"oid": 317997,
"name": "staff_pkey",
"sql": "PRIMARY KEY (staff_id)",
"restore-list-name": ""
1,
"process": {
"pid": 74368,
"start-time-epoch": 1662476080,
"start-time-string": "2022-09-06 16:54:40 CEST"

4.9 pgcopydb stream

pgcopydb stream - Stream changes from source database

Warning: This mode of operations has been designed for unit testing only.

Consider using the pgcopydb clone (with the --follow option) or the pgcopydb follow command instead.

Note: Some pgcopydb stream commands are still designed for normal operations, rather than unit testing only.

The pgcopydb stream sentinel set startpos, pgcopydb stream sentinel set endpos, pgcopydb stream sentinel set apply,
and pgcopydb stream sentinel set prefetch commands are necessary to communicate with the main pgcopydb clone
--followor pgcopydb follow process. See Change Data Capture Example 1 for a detailed example using pgcopydb
stream sentinel set endpos.

72 Chapter 4. Manual Pages

pgcopydb, Release 0.9

Also the commands pgcopydb stream setup and pgcopydb stream cleanup might be used directly in normal operations.
See Change Data Capture Example 2 for a detailed example.

This command prefixes the following sub-commands:

pgcopydb stream
setup Setup source and target systems for logical decoding
cleanup cleanup source and target systems for logical decoding
prefetch Stream JSON changes from the source database and transform them to SQL
catchup Apply prefetched changes from SQL files to the target database

+ create Create resources needed for pgcopydb

+ drop Drop resources needed for pgcopydb

+ sentinel Maintain a sentinel table on the source database
receive Stream changes from the source database
transform Transform changes from the source database into SQL commands
apply Apply changes from the source database into the target database

pgcopydb stream create
slot Create a replication slot in the source database
origin Create a replication origin in the target database

pgcopydb stream drop
slot Drop a replication slot in the source database
origin Drop a replication origin in the target database

pgcopydb stream sentinel
create Create the sentinel table on the source database
drop Drop the sentinel table on the source database
get Get the sentinel table values on the source database
+ set Maintain a sentinel table on the source database

pgcopydb stream sentinel set
startpos Set the sentinel start position LSN on the source database
endpos Set the sentinel end position LSN on the source database
apply Set the sentinel apply mode on the source database
prefetch Set the sentinel prefetch mode on the source database

Those commands implement a part of the whole database replay operation as detailed in section pgcopydb follow. Only
use those commands to debug a specific part, or because you know that you just want to implement that step.

Note: The sub-commands stream setup then stream prefetch and stream catchup are higher level com-
mands, that use internal information to know which files to process. Those commands also keep track of their progress.

The sub-commands stream receive, stream transform, and stream apply are lower level interface that work
on given files. Those commands still keep track of their progress, but have to be given more information to work.

4.9.1 pgcopydb stream setup

pgcopydb stream setup - Setup source and target systems for logical decoding

The command pgcopydb stream setup connects to the source database and creates a replication slot using the
logical decoding plugin wal2json, then creates a pgcopydb.sentinel table, and then connects to the target database
and creates a replication origin positioned at the LSN position of the just created replication slot.

pgcopydb stream setup: Setup source and target systems for logical decoding

usage: pgcopydb stream setup --source ... --target ... --dir ...
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot
--slot-name Stream changes recorded by this slot
--origin Name of the Postgres replication origin

4.9. pgcopydb stream 73

https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.9.2 pgcopydb stream cleanup

pgcopydb stream cleanup - cleanup source and target systems for logical decoding

The command pgcopydb stream cleanup connects to the source and target databases to delete the objects created
in the pgcopydb stream setup step.

pgcopydb stream cleanup: cleanup source and target systems for logical decoding

usage: pgcopydb stream cleanup --source ... --target ... --dir ...
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--snapshot Use snapshot obtained with pg_export_snapshot
--slot-name Stream changes recorded by this slot
--origin Name of the Postgres replication origin

4.9.3 pgcopydb stream prefetch

pgcopydb stream prefetch - Stream JSON changes from the source database and transform them to SQL

The command pgcopydb stream prefetch connects to the source database using the logical replication protocl and
the given replication slot, that should be created with the logical decoding plugin wal2json.

The prefetch command receives the changes from the source database in a streaming fashion, and writes them in a
series of JSON files named the same as their origin WAL filename (with the . json extension). Each time a JSON file
is closed, a subprocess is started to transform the JSON into an SQL file.

pgcopydb stream prefetch: Stream JSON changes from the source database and transform them to SQL
usage: pgcopydb stream prefetch --source ...

--source Postgres URI to the source database

--dir Work directory to use

--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--slot-name Stream changes recorded by this slot

--endpos LSN position where to stop receiving changes

4.9.4 pgcopydb stream catchup

pgcopydb stream catchup - Apply prefetched changes from SQL files to the target database

The command pgcopydb stream catchup connects to the target database and applies changes from the SQL files
that have been prepared with the pgcopydb stream prefetch command.

pgcopydb stream catchup: Apply prefetched changes from SQL files to the target database

usage: pgcopydb stream catchup --source ... --target ...
--source Postgres URI to the source database
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--slot-name Stream changes recorded by this slot
--endpos LSN position where to stop receiving changes --origin Name of the Postgres replication origin

74 Chapter 4. Manual Pages

https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.9.5 pgcopydb stream create slot

pgcopydb stream create slot - Create a replication slot in the source database

The command pgcopydb stream create slot connects to the source database and executes a SQL query to create
a logical replication slot using the plugin wal2 json.

pgcopydb create slot: Create a replication slot in the source database

usage: pgcopydb create slot --source ...
--source Postgres URI to the source database
--dir Work directory to use
--snapshot Use snapshot obtained with pg_export_snapshot
--slot-name Use this Postgres replication slot name

4.9.6 pgcopydb stream create origin

pgcopydb stream create origin - Create a replication origin in the target database

The command pgcopydb stream create originconnects to the target database and executes a SQL query to create
a logical replication origin. The starting LSN position --startpos is required.

pgcopydb stream create origin: Create a replication origin in the target database

usage: pgcopydb stream create origin --target ...
--target Postgres URI to the target database
--dir Work directory to use
--origin Use this Postgres origin name
--start-pos LSN position from where to start applying changes

4.9.7 pgcopydb stream drop slot

pgcopydb stream drop slot - Drop a replication slot in the source database

The command pgcopydb stream drop slot connects to the source database and executes a SQL query to drop the
logical replication slot with the given name (that defaults to pgcopydb).

pgcopydb stream drop slot: Drop a replication slot in the source database

usage: pgcopydb stream drop slot --source ...
--source Postgres URI to the source database
--dir Work directory to use
--slot-name Use this Postgres replication slot name

4.9.8 pgcopydb stream drop origin

pgcopydb stream drop origin - Drop a replication origin in the target database

The command pgcopydb stream drop origin connects to the target database and executes a SQL query to drop
the logical replication origin with the given name (that defaults to pgcopydb).

usage: pgcopydb stream drop origin --target ...
--target Postgres URI to the target database
--dir Work directory to use
--origin Use this Postgres origin name

4.9. pgcopydb stream 75

pgcopydb, Release 0.9

4.9.9 pgcopydb stream sentinel create

pgcopydb stream sentinel create - Create the sentinel table on the source database

The pgcopydb. sentinel table allows to remote control the prefetch and catchup processes of the logical decoding
implementation in pgcopydb.

pgcopydb stream sentinel create: Create the sentinel table on the source database

usage: pgcopydb stream sentinel create --source ...
--source Postgres URI to the source database
--startpos Start replaying changes when reaching this LSN
--endpos Stop replaying changes when reaching this LSN

4.9.10 pgcopydb stream sentinel drop

pgcopydb stream sentinel drop - Drop the sentinel table on the source database

The pgcopydb. sentinel table allows to remote control the prefetch and catchup processes of the logical decoding
implementation in pgcopydb.

pgcopydb stream sentinel drop: Drop the sentinel table on the source database
usage: pgcopydb stream sentinel drop --source ...

--source Postgres URI to the source database

4.9.11 pgcopydb stream sentinel get

pgcopydb stream sentinel get - Get the sentinel table values on the source database

pgcopydb stream sentinel get: Get the sentinel table values on the source database

usage: pgcopydb stream sentinel get --source ...
--source Postgres URI to the source database
--json Format the output using JSON

4.9.12 pgcopydb stream sentinel set startpos

pgcopydb stream sentinel set startpos - Set the sentinel start position LSN on the source database

pgcopydb stream sentinel set startpos: Set the sentinel start position LSN on the source database
usage: pgcopydb stream sentinel set startpos --source ... <start LSN>

--source Postgres URI to the source database

4.9.13 pgcopydb stream sentinel set endpos

pgcopydb stream sentinel set endpos - Set the sentinel end position LSN on the source database

pgcopydb stream sentinel set endpos: Set the sentinel end position LSN on the source database

usage: pgcopydb stream sentinel set endpos --source ... <end LSN>
--source Postgres URI to the source database
--current Use pg_current_wal_flush_lsn() as the endpos

76 Chapter 4. Manual Pages

pgcopydb, Release 0.9

4.9.14 pgcopydb stream sentinel set apply

pgcopydb stream sentinel set apply - Set the sentinel apply mode on the source database

pgcopydb stream sentinel set apply: Set the sentinel apply mode on the source database
usage: pgcopydb stream sentinel set apply --source ... <truel|false>

--source Postgres URI to the source database

4.9.15 pgcopydb stream sentinel set prefetch

pgcopydb stream sentinel set prefetch - Set the sentinel prefetch mode on the source database

pgcopydb stream sentinel set prefetch: Set the sentinel prefetch mode on the source database
usage: pgcopydb stream sentinel set prefetch --source ... <true|false>

--source Postgres URI to the source database

4.9.16 pgcopydb stream receive

pgcopydb stream receive - Stream changes from the source database

The command pgcopydb stream receive connects to the source database using the logical replication protocl and
the given replication slot, that should be created with the logical decoding plugin wal2json.

The receive command receives the changes from the source database in a streaming fashion, and writes them in a series
of JSON files named the same as their origin WAL filename (with the . json extension).

pgcopydb stream receive: Stream changes from the source database

usage: pgcopydb stream receive --source ...
--source Postgres URI to the source database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--slot-name Stream changes recorded by this slot
--endpos LSN position where to stop receiving changes

4.9.17 pgcopydb stream transform

pgcopydb stream transform - Transform changes from the source database into SQL commands

The command pgcopydb stream transform transforms a JSON file as received by the pgcopydb stream
receive command into an SQL file with one query per line.

pgcopydb stream transform: Transform changes from the source database into SQL commands

usage: pgcopydb stream transform [--source ...] <json filename> <sql filename>
--source Postgres URI to the source database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure

--not-consistent Allow taking a new snapshot on the source database

4.9. pgcopydb stream 77

https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

4.9.18 pgcopydb stream apply

pgcopydb stream apply - Apply changes from the source database into the target database

The command pgcopydb stream apply applies a SQL file as prepared by the pgcopydb stream transformcom-
mand in the target database. The apply process tracks progress thanks to the Postgres API for Replication Progress
Tracking.

pgcopydb stream apply: Apply changes from the source database into the target database

usage: pgcopydb stream apply --target ... <sql filename>
--target Postgres URI to the target database
--dir Work directory to use
--restart Allow restarting when temp files exist already
--resume Allow resuming operations after a failure
--not-consistent Allow taking a new snapshot on the source database
--origin Name of the Postgres replication origin

4.9.19 Options

The following options are available to pgcopydb stream sub-commands:

--source Connection string to the source Postgres instance. See the Postgres documentation
for connection strings for the details. In short both the quoted form "host=. ..
dbname=..." and the URI form postgres://user@host:5432/dbname are
supported.

--target Connection string to the target Postgres instance.

--dir During its normal operations pgcopydb creates a lot of temporary files to track

sub-processes progress. Temporary files are created in the directory location given
by this option, or defaults to ${TMPDIR}/pgcopydb when the environment vari-
able is set, or then to /tmp/pgcopydb.

Change Data Capture files are stored in the cdc sub-directory of the --dir option
when provided, otherwise see XDG_DATA_HOME environment variable below.

--restart When running the pgcopydb command again, if the work directory already con-
tains information from a previous run, then the command refuses to proceed and
delete information that might be used for diagnostics and forensics.

In that case, the --restart option can be used to allow pgcopydb to delete traces
from a previous run.

--resume When the pgcopydb command was terminated before completion, either by an
interrupt signal (such as C-c or SIGTERM) or because it crashed, it is possible to
resume the database migration.

To be able to resume a streaming operation in a consistent way, all that’s required
is re-using the same replication slot as in previous run(s).

--slot-name Logical replication slot to use. At the moment pgcopydb doesn’t know how to
create the logical replication slot itself. The slot should be created within the
same transaction snapshot as the initial data copy.

Must be using the wal2json output plugin, available with format-version 2.

--endpos Logical replication target LSN to use. Automatically stop replication and exit with
normal exit status 0 when receiving reaches the specified LSN. If there’s a record
with LSN exactly equal to Isn, the record will be output.

78 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://github.com/eulerto/wal2json/

pgcopydb, Release 0.9

The --endpos option is not aware of transaction boundaries and may truncate
output partway through a transaction. Any partially output transaction will not be
consumed and will be replayed again when the slot is next read from. Individual
messages are never truncated.

See also documentation for pg_recvlogical.

--origin Logical replication target system needs to track the transactions that have been
applied already, so that in case we get disconnected or need to resume operations
we can skip already replayed transaction.

Postgres uses a notion of an origin node name as documented in Replication
Progress Tracking. This option allows to pick your own node name and defaults to
“pgcopydb”. Picking a different name is useful in some advanced scenarios like
migrating several sources in the same target, where each source should have their
own unique origin node name.

--startpos Logical replication target system registers progress by assigning a current LSN to
the --origin node name. When creating an origin on the target database system,
it is required to provide the current LSN from the source database system, in order
to properly bootstrap pgcopydb logical decoding.

--verbose Increase current verbosity. The default level of verbosity is INFO. In ascending
order pgcopydb knows about the following verbosity levels: FATAL, ERROR,
WARN, INFO, NOTICE, DEBUG, TRACE.

--debug Set current verbosity to DEBUG level.
--trace Set current verbosity to TRACE level.
--quiet Set current verbosity to ERROR level.

4.9.20 Environment

PGCOPYDB_SOURCE_PGURI

Connection string to the source Postgres instance. When --source is ommitted from the command line,
then this environment variable is used.

PGCOPYDB_TARGET_PGURI

Connection string to the target Postgres instance. When --target is ommitted from the command line,
then this environment variable is used.

TMPDIR

The pgcopydb command creates all its work files and directories in ${TMPDIR}/pgcopydb, and defaults
to /tmp/pgcopydb.

XDG_DATA_HOME

The pgcopydb command creates Change Data Capture files in the standard place XDG_DATA_HOME,
which defaults to ~/.1local/share. See the XDG Base Directory Specification.

4.9. pgcopydb stream 79

https://www.postgresql.org/docs/current/app-pgrecvlogical.html
https://www.postgresql.org/docs/current/replication-origins.html
https://www.postgresql.org/docs/current/replication-origins.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

pgcopydb, Release 0.9

4.9.21 Examples

As an example here is the output generated from running the cdc test case, where a replication slot is created before
the initial copy of the data, and then the following INSERT statement is executed:

begin;

with r as
(
insert into rental(rental_date, inventory_id, customer_id, staff_id, last_update)
select '2022-06-01', 371, 291, 1, '2022-06-01
returning rental_id, customer_id, staff_id
)
insert into payment(customer_id, staff_id, rental_id, amount, payment_date)
select customer_id, staff_id, rental_id, 5.99, '2020-06-01'
from r;

commit;

The command then looks like the following, where the --endpos has been extracted by calling the
pg_current_wal_lsn() SQL function:

$ pgcopydb stream receive --slot-name test_slot --restart --endpos 0/236D668 -vv

16:01:57 157 INFO Running pgcopydb version 0.7 from "/usr/local/bin/pgcopydb"

16:01:57 157 DEBUG copydb.c:406 Change Data Capture data is managed at "/var/lib/postgres/.local/share/pgcopydb"

16:01:57 157 INFO copydb.c:73 Using work dir "/tmp/pgcopydb”

16:01:57 157 DEBUG pidfile.c:143 Failed to signal pid 34: No such process

16:01:57 157 DEBUG pidfile.c:146 Found a stale pidfile at "/tmp/pgcopydb/pgcopydb.pid"

16:01:57 157 INFO pidfile.c:147 Removing the stale pid file "/tmp/pgcopydb/pgcopydb.pid"

16:01:57 157 INFO copydb.c:254 Work directory "/tmp/pgcopydb” already exists

16:01:57 157 INFO copydb.c:258 A previous run has run through completion

16:01:57 157 INFO copydb.c:151 Removing directory "/tmp/pgcopydb”

16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb” && mkdir -p "/tmp/pgcopydb"

16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/schema" & mkdir -p "/tmp/pgcopydb/schema"

16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run" && mkdir -p "/tmp/pgcopydb/run"

16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run/tables" && mkdir -p "/tmp/pgcopydb/run/tables"

16:01:57 157 DEBUG copydb.c:445 rm -rf "/tmp/pgcopydb/run/indexes" && mkdir -p "/tmp/pgcopydb/run/indexes"

16:01:57 157 DEBUG copydb.c:445 rm -rf "/var/lib/postgres/.local/share/pgcopydb" && mkdir -p "/var/lib/postgres/.local/share/
<spgcopydb"

16:01:57 157 DEBUG pgsql.c:2476 starting log streaming at 0/0 (slot test_slot)

16:01:57 157 DEBUG pgsql.c:485 Connecting to [source] "postgres://postgres@source:/postgres?password= &replication=database"
16:01:57 157 DEBUG pgsql.c:2009 IDENTIFY_SYSTEM: timeline 1, xlogpos 0/236D668, systemid 7104302452422938663
c
c

Nnnoonnnnonn

16:01:57 157 DEBUG pgsql.c:3188 RetrieveWalSegSize: 16777216
16:01:57 157 DEBUG pgsql.c:2547 streaming initiated
16:01:57 157 INFO stream.c:237 Now streaming changes to "/var/lib/postgres/.local/share/pgcopydb/ 1 2.json

16:01:57 157 DEBUG stream.c:341 Received action B for XID 488 in LSN 0/236D638

16:01:57 157 DEBUG stream.c:341 Received action I for XID 488 in LSN 0/236D178

16:01:57 157 DEBUG stream.c:341 Received action I for XID 488 in LSN 0/236D308

16:01:57 157 DEBUG stream.c:341 Received action C for XID 488 in LSN 0/236D638

16:01:57 157 DEBUG pgsql.c:2867 pgsql_stream_logical: endpos reached at 0/236D668

16:01:57 157 DEBUG stream.c:382 Flushed up to 0/236D668 in file "/var/lib/postgres/.local/share/pgcopydb/
— 1 2.json"

16:01:57 157 INFO pgsql.c:3030 Report write_lsn 0/236D668, flush_lsn 0/236D668

16:01:57 157 DEBUG pgsql.c:3107 end position 0/236D668 reached by WAL record at 0/236D668

16:01:57 157 DEBUG pgsql.c:408 Disconnecting from [source] "postgres://postgres@source:/postgres?password=
—sreplication=database"

16:01:57 157 DEBUG stream.c:414 streamClose: closing file "/var/lib/postgres/.local/share/pgcopydb/ 1 2.
< json"

16:01:57 157 INFO stream.c:171 Streaming is now finished after processing 4 messages

The JSON file then contains the following content, from the wal2json logical replication plugin. Note that you're seeing
diffent LSNs here because each run produces different ones, and the captures have not all been made from the same
run.

$ cat /var/lib/postgres/.local/share/pgcopydb/ 1 2.json

{"action":"B","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","1sn":"0/236F5A8", "nextlsn":"0/236F5D8"}
{"action":"I","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","1sn":"0/236FQE8", "schema":"public","table":"rental",
—"columns": [{"name":"rental_id","type":"integer","value":16050}, {"name":"rental_date","type":"timestamp with time zone",
—"value":"2022-06-01 00:00:00+00"}, {"name":"inventory_id","type":"integer","value":371}, {"name":"customer_id", "type":"integer
—","value":291}, {"name" : "return_date","type":"timestamp with time zone","value":null},{"name":"staff_id","type":"integer",
—"value":1}, {"name":"last_update","type":"timestamp with time zone","value":"2022-06-01 00:00:00+00"}]1}

{"action":"I","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","1sn":"0/236F278","schema":"public","table": "payment_p2020_

—06","columns": [{"name": "payment_id","type":"integer", "value":32099}, {"name":"customer_id","type":"integer","value":291}, {

(continues on next page)

80 Chapter 4. Manual Pages

pgcopydb, Release 0.9

(continued from previous page)

—"name":"staff_id","type":"integer","value":1},{"name":"rental_id","type":"integer","value":16050}, {"name": "amount", "type":
—"numeric(5,2)","value":5.99}, {"name" : "payment_date","type":"timestamp with time zone","value":"2020-06-01 00:00:00+00"}]1}
{"action":"C","xid":489,"timestamp":"2022-06-27 13:24:31.460822+00","1sn":"0/236F5A8", "nextlsn":"0/236F5D8"}

It’s then possible to transform the JSON into SQL.:

$ pgcopydb stream transform ./tests/cdc/ 1 2.json /tmp/ 1 2.sql

And the SQL file obtained looks like this:

$ cat /tmp/ 1 2.sql

BEGIN; -- {"xid":489,"1lsn":"0/236F5A8"}

INSERT INTO "public"."rental" (rental_id, rental_date, inventory_id, customer_id, return_date, staff id, last_update) VALUES.,
(16050, '2022-06-01 00:00:00+00', 371, 291, NULL, 1, '2022-06-01 00:00:00+00');

INSERT INTO "public"."payment_p2020_06" (payment_id, customer_id, staff_id, rental_id, amount, payment_date) VALUES (32099,..
291, 1, 16050, 5.99, '2020-06-01 00:00:00+00');

COMMIT; -- {"xid": 489,"1lsn":"0/236F5A8"}

4.10 pgcopydb configuration

Manual page for the configuration of pgcopydb. The pgcopydb command accepts sub-commands and command line
options, see the manual for those commands for details. The only setup that pgcopydb commands accept is the filtering.

4.10.1 Filtering

Filtering allows to skip some object definitions and data when copying from the source to the target database. The
pgcopydb commands that accept the option --filter (or --filters) expect an existing filename as the option argu-
ment. The given filename is read in the INI file format, but only uses sections and option keys. Option values are not
used.

Here is an inclusion based filter configuration example:

[include-only-table]
public.allcols
public.csv
public.serial
public.xzero

[exclude-index]
public. foo_gin_tsvector

[exclude-table-data]
public.csv

Here is an exclusion based filter configuration example:

[exclude-schema]
foo

bar

expected

[exclude-table]
"schema" . "name"
schema.othername
err.errors

public.serial

[exclude-index]
schema.indexname

[exclude-table-data]
public.bar
nsitra.testl

4.10. pgcopydb configuration 81

pgcopydb, Release 0.9

Filtering can be done with pgcopydb by using the following rules, which are also the name of the sections of the INI
file.

include-only-tables
This section allows listing the exclusive list of the source tables to copy to the target database. No other table will be
processed by pgcopydb.

Each line in that section should be a schema-qualified table name. Postgres identifier quoting rules can be used to avoid
ambiguity.

When the section include-only-tables is used in the filtering configuration then the sections exclude-schema
and exclude-table are disallowed. We would not know how to handle tables that exist on the source database and
are not part of any filter.

exclude-schema

This section allows adding schemas (Postgres namespaces) to the exclusion filters. All the tables that belong to any
listed schema in this section are going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is used.

exclude-table

This section allows to add a list of qualified table names to the exclusion filters. All the tables that are listed in the
exclude-table section are going to be ignored by the pgcopydb command.

This section is not allowed when the section include-only-tables is used.

exclude-index

This section allows to add a list of qualified index names to the exclusion filters. It is then possible for pgcopydb to
operate on a table and skip a single index definition that belong to a table that is still processed.

exclude-table-data

This section allows to skip copying the data from a list of qualified table names. The schema, index, constraints, etc of
the table are still copied over.

4.10.2 Reviewing and Debugging the filters
Filtering a pg_restore archive file is done through rewriting the archive catalog obtained with pg_restore --list.
That’s a little hackish at times, and we also have to deal with dependencies in pgcopydb itself.
The following commands can be used to explore a set of filtering rules:
e pgcopydb list depends

* pgcopydb restore parse-list

82 Chapter 4. Manual Pages

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search

83

	Introduction to pgcopydb
	Feature Matrix
	pgcopydb uses pg_dump and pg_restore
	Change Data Capture, or fork and follow

	Design Considerations
	Bypass intermediate files for the TABLE DATA
	Notes about concurrency
	For each table, build all indexes concurrently
	Same-table Concurrency
	Significant differences when using same-table COPY concurrency
	Same-table COPY concurrency performance limitations

	Installing pgcopydb
	debian packages
	RPM packages
	Docker Images
	Build from sources

	Manual Pages
	pgcopydb
	Synopsis
	Description
	pgcopydb help
	pgcopydb version

	pgcopydb clone
	pgcopydb clone
	pgcopydb fork
	pgcopydb copy-db
	Description
	Base copy, or the clone operation
	Postgres privileges, superuser, and dump and restore
	Change Data Capture using Postgres Logical Decoding
	Change Data Capture Example 1
	Change Data Capture Example 2

	Options
	Environment
	Examples

	pgcopydb follow
	pgcopydb follow
	Description
	Replica Identity and lack of Primary Keys
	Logical Decoding Pre-Fetching
	The sentinel table, or the Remote Control
	Options
	Environment

	pgcopydb snapshot
	Options
	Environment
	Examples

	pgcopydb copy
	pgcopydb copy db
	pgcopydb copy roles
	pgcopydb copy extensions
	pgcopydb copy schema
	pgcopydb copy data
	pgcopydb copy table-data
	pgcopydb copy blobs
	pgcopydb copy sequences
	pgcopydb copy indexes
	pgcopydb copy constraints
	Description
	Options
	Environment
	Examples

	pgcopydb dump
	pgcopydb dump schema
	pgcopydb dump pre-data
	pgcopydb dump post-data
	pgcopydb dump roles
	Description
	Options
	Environment
	Examples

	pgcopydb restore
	pgcopydb restore schema
	pgcopydb restore pre-data
	pgcopydb restore post-data
	pgcopydb restore roles
	pgcopydb restore parse-list
	Description
	Options
	Environment
	Examples

	pgcopydb list
	pgcopydb list extensions
	pgcopydb list tables
	pgcopydb list table-parts
	pgcopydb list sequences
	pgcopydb list indexes
	pgcopydb list depends
	pgcopydb list schema
	pgcopydb list progress
	Options
	Environment
	Examples

	pgcopydb stream
	pgcopydb stream setup
	pgcopydb stream cleanup
	pgcopydb stream prefetch
	pgcopydb stream catchup
	pgcopydb stream create slot
	pgcopydb stream create origin
	pgcopydb stream drop slot
	pgcopydb stream drop origin
	pgcopydb stream sentinel create
	pgcopydb stream sentinel drop
	pgcopydb stream sentinel get
	pgcopydb stream sentinel set startpos
	pgcopydb stream sentinel set endpos
	pgcopydb stream sentinel set apply
	pgcopydb stream sentinel set prefetch
	pgcopydb stream receive
	pgcopydb stream transform
	pgcopydb stream apply
	Options
	Environment
	Examples

	pgcopydb configuration
	Filtering
	include-only-tables
	exclude-schema
	exclude-table
	exclude-index
	exclude-table-data

	Reviewing and Debugging the filters

	Indices and tables

